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ABSTRACT 

Throughout the past year, the development of Electric Vehicles (EVs) has 

been rapidly increasing due to shortage of unsustainable energy source and global 

climate warming. Battery is one of the key technologies applied in EVs that also 

contributes to the restriction of EVs expansion. Lithium Ferro Phosphate (LiFePO4) 

is one of the lithium-ion batteries that is widely used due to its high energy density, 

long lifespan, high efficiency, fast charging characteristic and low self-discharge. For 

battery management system (BMS), the state of charge (SOC) estimation of the 

battery is an indispensable parameter that need to be essentially considered. The 

accuracy of SOC estimation is very crucial to monitor the charging and discharging 

operation of the battery pack for optimizing the performance and prolong the lifespan 

of the battery. Since the battery stores the energy in the chemical state, and this 

chemical energy cannot be directly accessed, then the SOC estimation becomes very 

complex. This also includes many uncertainties and noises contribute a challenge in 

determining the accuracy of the SOC estimation. The objectives of this project focus 

on the development of the LiFePO4 battery model using Equivalent Circuit Model 

(ECM) to predict the SOC by using Unscented Kalman Filter (UKF) algorithm. 

Several battery ECMs with up to three level of RC pairs have been studied to 

compare the accuracy of the model. The battery ECM parameters were estimated 

using MATLAB Parameter Estimation Tool by utilising the dynamic behaviours of 

the LiFePO4 battery from the experimental data. The dynamic characteristics of the 

LiFePO4 battery have been experimentally studied by using Constant Discharge Test 

(CDT), Pulse Discharge Test (PDT) and Random Charge and Discharge Test 

(RCDT). The SOC estimation by using UKF algorithm was implemented by using 

battery ECM from one RC pair until three RC pairs. Then, the accuracy of the battery 

ECMs were analysed by using error analysis such as Mean Absolute Error (MAE), 

Mean Square Error (MSE) and Root Mean Square Error (RMSE). From the result of 

error analysis, the most accurate battery ECM was selected to be implemented in the 

UKF algorithm to estimate the SOC of the LiFePO4 battery The results from the 

simulation are then validated by comparing to the real SOC by using Coulomb 

Counting method Then, the performance of the UKF algorithm was compared to the 

Extended Kalman Filter (EKF) and Particle Filter (PF) by using error analysis of 

MAE, MSE and RMSE. From the result of the error analysis, the most accurate 

algorithm for estimating the SOC is determined. 
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ABSTRAK 

Sejak beberapa tahun kebelakangan ini, pembangunan kenderaan elektrik 

sangat pesat dijalankan berikutan pemanasan iklim global dan kekurangan sumber 

tenaga asli. Bateri merupakan komponen yang sangat penting dalam kenderaan 

elektrik. Lithium Ferro Phosphate (LiFePO4) merupakan salah satu daripada bateri 

lithium-ion yang digunakan secara meluas kerana ia mempunyai ketumpatan tenaga 

yang tinggi, kecekapan yang tinggi, jangka hayat yang lama, pengecasan pantas dan 

kadar nyahcas sendiri yang perlahan. Bagi sistem pengurusan bateri (BMS), 

anggaran keadaan cas (SOC) adalah parameter yang sangat penting untuk 

menentukan kadar operasi cas dan nyahcas bateri demi mengoptimumkan prestasi 

dan memanjangkan jangka hayat bateri. Memandangkan bateri menyimpan tenaga 

dalam keadaan kimia, dan tidak boleh diukur secara terus, maka proses anggaran 

SOC menjadi sangat kompleks. Ini juga disebabkan oleh banyak ketidakpastian dan 

gangguan dalam proses menganggar SOC secara tepat. Objektif projek ini adalah 

untuk membangunkan model bateri dengan menggunakan model elektrik setara 

(ECM) dan algoritma Unscented Kalman Filter (UKF) untuk menganggarkan SOC. 

Beberapa jenis ECM dengan satu hingga tiga pasangan RC telah dikaji dalam 

kecekapan menganggarkan SOC. Nilai bagi parameter RC dalam ECM ditentukan 

dengan menggunakan MATLAB Parameter Estimation Tool dan juga sifat dinamik 

bateri LiFePO4 yang dikaji secara eksperimen. Tiga jenis pengujian bateri telah 

dijalankan iaitu pengujian nyahcas tetap (CDT), pengujian nyahcas denyut (PDT) 

dan pengujian cas dan nyahcas rawak (RCDT). Anggaran SOC telah dijalankan 

dengan mengunakan algoritma UKF dan ketiga-ketiga jenis ECM dan ketepatan 

anggaran SOC telah dianalisis dengan menggunakan kaedah analisis ralat seperti 

purata ralat mutlak (MAE), purata ralat kuasa dua (MSE) dan punca kuasa dua purata 

ralat kuasa dua (RMSE). Berdasarkan keputusan analisis ralat, model bateri yang 

mempunyai ketepatan yang paling tinggi telah ditentukan. Seterusnya, dengan 

menggunakan model bateri yang paling cekap, anggaran SOC telah dijalankan 

dengan menggunakan algoritma UKF. Kemudian keputusan simulasi ini telah 

divalidasi dengan membandingkan dengan SOC sebenar yang ditentukan melalui 

kaedah Pengiraan Coulomb. Seterusnya, prestasi algoritma UKF dinilai dengan 

menggunakan kaedah analisis ralat iaitu MAE, MSE dan RMSE. Prestasi algoritma 

UKF juga telah dibandingkan dengan algoritma Extended Kalman Filter (EKF) dan 

juga Particle Filter (PF) dalam ketepatan menganggarkan SOC. Berdasarkan 

keputusan analisis ralat, algoritma yang paling tepat dalam menganggarkan SOC 

telah ditentukan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

The world's energy supply is heavily reliant on non-renewable energy 

resources like oil, coal, and natural gas, which produce greenhouse gases including 

carbon monoxide, CO, and carbon dioxide, CO2. According to International Energy 

Agency (IEA), by 2018, the world total energy supply is mostly generated by using 

oil which is 31.6%. The CO2 emission by 2018 contributed by the consumption of oil 

and fuel combustion is almost 34.1%. For electricity generation, 38.2% of the total 

electricity energy is generated by using coal. The coal combustions has produced 

about 44.0% of CO2 emission [1] 

According to statistics provided by [1], the highest sector that consume oil as 

the energy source is from transportation sector that includes aviation and rail, which 

contributes about 58.4%. Due to the price of oil and coal is keep increasing caused 

by the depletion of the resources and the GHGs effect, hence the transformation in 

this sector may greatly reduce the dependency on the natural resources and will 

reduce the GHGs effect. 

By referring to [1], the electricity generation by using non-hydro renewable 

resources that includes solar energy harvesting, contributes about 9.8%. Hence, to 

reduce more the GHGs effect, the electricity generation must go greener by using 

more renewable resources. Since the transportation sector have also contributed a 

severe GHGs effect as describes earlier, thus Electric Vehicle (EV) has got the 

attention and interest of scientists due to its advantages of zero GHGs emissions and 

higher efficiency. 
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Solar energy harvesting and electric vehicle need energy storage to efficiently 

operate. According to [2], lead acid battery is most widely used in solar photovoltaic 

(PV) system. However, recent study has shown that lithium-ion battery has an 

accumulated advantage to replace the lead acid battery in terms of a better energy 

efficiency and cost effective. For EV application, lithium-ion battery has also been 

widely utilised due to its long cycle lifespan, high energy efficient and density and 

considerably environmental safe [3]. Since the lithium-ion battery has been widely 

implemented in EV and solar PV system, thus the battery management system 

(BMS) plays an important role to ensure the safe battery operation by monitoring the 

charge and discharge process based on the state of charge (SOC), state of health 

(SOH), state of power (SOP) and state of energy [3]. 

1.2 Battery Management System 

The main purpose of BMS implementation is to continuously monitor and 

manage various states of the lithium-ion battery throughout its operation period [4]. 

The BMS must has an ability to observe and estimate the battery parameters such as 

an operating voltage and current, SOC, SOH, ambient temperature, battery aging and 

internal impedance [4]. A general BMS can be illustrated as shown Figure 1.1. 

 

Figure 1.1 Block Diagram of General BMS [4] 
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1.2.1 Battery Modelling 

Battery model is implemented in the BMS to indirectly represents the 

physical battery. Various sensors are implemented to sense the surface temperature, 

terminal current and voltage of the battery. Then all the measurements will be 

applied to the battery model to estimate the battery states such as SOC, SOH and 

SOP. The battery model parameters must be pre-determined in order for the battery 

model to perform accurately [5]. 

There are various battery models that had been studied. They are mainly 

categorised into three categories which are equivalent circuit model, empirical model 

and electrochemical model. Electrochemical model is considered as the most 

accurate model since the model is developed based on physical and chemical 

reaction in the battery. However, it is not the most suitable model to be implemented 

in the BMS due to the complexity of the model. Empirical model also known as 

mathematical model is the simplified model version of electrochemical model. The 

complexity is reduced but this affects the battery model accuracy by almost 20%. 

Equivalent circuit model (ECM) consists of series resistor and resistor-capacitor 

(RC) pair to model the battery characteristics. It has a considerably good accuracy 

and less complex to be applied in the BMS [5]. 

1.2.2 State of Charge Estimation 

State of charge (SOC) of the battery cannot be directly measured since it 

represents the electrical energy stored in the chemical state. Hence, SOC needs to be 

estimated in the BMS by utilising the battery model and the measured battery 

parameters such as surface temperature, terminal current and voltage of the battery. 

The performance of the SOC must be accurate, reliable and robust. There are many 

methods of SOC estimation that had been studied. They generally can be categorised 

as conventional method, adaptive method and learning algorithm. Conventional 

method includes open circuit voltage (OCV) method that has high accuracy but 



4 

cannot be implemented in online BMS application. Adaptive filter includes various 

filters such as Kalman Filter and Particle Filter (PF) [6] 

1.3 Problem Statement 

Lithium Ferro Phosphate (LiFePO4) battery is widely implemented in EV that 

acts as an energy storage element since it could supply a higher energy capacity 

throughout the longer period and environmentally safe. Hence, a BMS that includes a 

battery model is critical as a guide for a system designer to forecast the dynamic 

behaviours of the battery. By utilising an accurate battery ECM along with an 

accurate state estimation algorithm, the BMS can accurately estimate the SOC of the 

battery and therefore optimise the battery’s performance by managing the charge and 

discharge process of the battery. 

However, to accurately design the SOC estimation of the battery is very 

challenging due to many uncertainties and noises. The effect of ambient temperature, 

battery temperature, stability of the sensor's measurement, fluctuation in terminal 

voltage and current would deteriorate the accuracy and precision of the SOC 

prediction. Therefore, further study on the battery SOC estimation is very crucial in 

order to compensate all the noises and uncertainties for a more accurate prediction of 

the battery SOC. 

1.4 Objectives 

The objectives of the research are: 

a. to develop a battery model by using Equivalent Circuit Model (ECM) and 

estimate the battery model’s parameters based on experimental data of 

LiFePO4 battery characteristics. 
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b. to apply the battery ECM for SOC estimation by using Unscented Kalman

Filter (UKF) algorithm, then determine the best model of battery ECM.

c. to analyse the performance of UKF SOC estimation by comparing the

simulation result with real SOC by Coulomb Counting of LiFePO4 battery

and with Extended Kalman Filter (EKF) and Particle Filter (PF) algorithm

that had been conducted from the previous research.

1.5 Scope of work 

In order to achieve the above-mentioned objectives, this research will focus 

on the scopes as below: 

a. LiFePO4 battery is chosen due to fast charging performance and

environmentally friendly.

b. battery ECM is considered as a cell level only, so that the common multiple

cells problem such as cell imbalance and individual cell voltage monitoring

can be neglected.

c. up to three level of RC pairs will be studied for the battery ECM.

d. UKF algorithm is chosen to perform SOC estimation due to its accuracy and

robustness.

e. the performance of UKF will be analysed by comparing to the real SOC by

Coulomb Counting method, EKF and PF method.

1.6 Report Outline 

To further proceed for this report, some literatures and previous works are 

reviewed and studied in chapter 2. Two main parts of the literature review is to study 

the battery modelling and state of charge (SOC) estimation methods. Several battery 

models are reviewed and compared to determine the best battery model to be 
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implemented. Then, various SOC estimation methods are studied to compare the 

performance and complexity of each SOC estimation method. Consequently, the 

SOC estimation method with considerably high accuracy and less complex is chosen. 

In chapter 3, the methodology to achieve the research objectives are being 

proposed. The method starts with the experimental works for the LiFePO4. The 

dynamic characteristic of the battery is studied by conducting the Constant Discharge 

Test (CDT), Pulse Discharge Test (PDT) and Random Charge Discharge Test 

(RCDT), thus the battery model parameters can be determined by 

using MATLAB Parameter Estimation Tool. Since the SOC of the LiFePO4 

battery cannot be assessed directly, then the Coulomb Counting method 

based on measured current is performed to determine the SOC. This SOC is 

considered as the real SOC of the LiFePO4 battery. Then, the SOC estimation by 

using Unscented Kalman Filter (UKF) has been performed. The performance 

of the UKF has been evaluated by analysing the error analysis as compared to the 

real SOC, EKF and PF method. Thus, the best SOC estimation method can be 

suggested. 

In chapter 4, the results have been discussed. The CDT, PDT and 

RCDT are presented. Thus, the dynamic characteristics of the LiFePO4 battery 

can be observed. Then, the real SOC LiFePO4 battery has been determined 

by using Coulomb Counting method. The results from the previous 

researcher that includes the EKF and PF method for SOC estimation also have 

been presented in this chapter. The results of battery ECM RC parameters 

estimation by using MATLAB Parameter Estimation Tool are also 

presented. Then, the performance of all battery ECMs in estimating the SOC by 

using UKF algorithm are analysed and presented. For the last result, the 

performance of UKF algorithm is discussed by comparing to the performance of 

EKF and PF algorithm 

Chapter 5 discuss about the future works that could possibly be conducted in 

the future. This includes the implementation of new estimation algorithm such 

as Dual EKF (DUKF) and Dual UKF (DUKF) since these improved 

algorithms are known to have a better accuracy in state estimation. 
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