COMPENSATOR SKYHOOK DAMPING CONTROL FOR RAILWAY VEHICLES

MOHAMMED ALKALI ABBO

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechatronics and Automatic Control)

> School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > SEPTEMBER 2021

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother, who taught me that even the largest task can be accomplished if it is done one step at a time.

ACKNOWLEDGEMENT

I spoke with many people while writing this thesis, including researchers and academicians. They have helped me to better understand and think about things. I would like to convey my gratitude to Dr. Fazilah BT Hassan, my main thesis supervisor, for her overwhelming support, direction and criticism. Assoc. Prof. Dr. Abdul Rashid Bin Husain, Ts. Dr. Herman Bin Wahid, Dr. Fatimah Sham Bt. Ismail and Dr. Mohd Ariffanan Bin Mohd Basri , for their guidance, counsel, and inspiration. This thesis would not have been the same if it hadn't been for their continual interest and support.

I owe a debt of gratitude to Universiti Teknologi Malaysia (UTM) for supporting my M.Eng. Thesis. Special thanks go out to the librarian at UTM and the members of the CICT for their assistance in supplying the relevant support.

My colleagues postgraduate student's assistance should also be acknowledged. My sincere gratitude also goes out to all of my coworkers and those who have helped me on various occasions. Their suggestions and opinions are quite helpful. Unfortunately, there is not enough room to mention them all in this space. I am also very grateful to every member of my family.

ABSTRACT

The work in this thesis proposed a control method for active technology in trains using skyhook damping control algorithm. The main advantage of the method is the good improvement of passenger ride comfort on straight track such that it can be computed rapidly using a highly effective controller which show significant effect in compromising the tradeoff between ride quality vs track following. The skyhook damping proposed in this project is presented in quarter car model. Conventional skyhook damping uses high pass filter to achieve the tradeoff between ride quality and track following. Here lead-lag compensator that acted as filter is proposed. MATLAB simulations are carried out under some conditions to test the effectiveness of the proposed method, namely step response, rise time and percentage over shoot. The advantage of the proposed method over the conventional skyhook damping is expected to increase by a significant percent in the train speed and a relative percentage decrease in the steady state oscillations. It is predicted that the method can be very useful in the design of a practical high performance, low cost controller of active suspension railway system.

ABSTRAK

Kerja di dalam tesis ini mencadangkan kaedah kawalan bagi teknologi aktif menggunakan penyerap Skyhook algoritma kawalan. Kelebihan kaedah ini adalah ia dapat memperbaiki keselesaan penumpang yang menaiki keretapi tersebut di trek yang rata di mana ia boleh di gunakan secara efektif. Pengawal yang mempunyai efektif yang tinggi menunjukkan kesan yang baik di dalam tolak ansur antara kualiti penumpang dan ikutan trek. Penyerap skyhook yang dicadangkan didalam tesis ini dilakukan didalam model suku kenderaan. Penyerap Skyhook konvensional menggunakan Penapis Lalu Tinggi (HPF) untuk mendapatkan pertukaran antara keselesaan penumpang dan ikutan trek. Di sini, pemampan lead-lag(depan-belakang) yang berguna sebagai penapis telah dicadangkan. Simulasi Matlab dijalankan untuk mengkaji kebaikan kaedah yang dicadangkan iaitu respon unit langkah, masa naikan dan peratusan overshoot(terlebih tembakan). Kaedah ini dijangka dapat meningkatkan kadar efektif dan mengurangkan hayunan. Ia juga dijangka meningkatkan prestasi menggunakan kawalan yang murah untuk teknologi aktif bagi sistem keretapi.

TABLE OF CONTENTS

TITLE

DEC	LARATION	iii
DED	ICATION	iv
ACK	NOWLEDGEMENT	V
ABS	ГКАСТ	vi
ABS	ГКАК	vii
TAB	LE OF CONTENTS	viii
LIST	T OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF ABBREVIATIONS	xiv
LIST	OF SYMBOLS	XV
LIST	OF APPENDICES	xvii
CHAPTER 1	INTRODUCTION	1
1.1	Problem Background	1
1.2	Problem Statement	2
1.3	Research Objectives	2
1.4	Scope of the study	3
1.5	Organization of the report	3
CHAPTER 2	LITERATURE REVIEW	5
2.1	Active Suspension	5
2.2	Basic Term of Active Suspension (Cut-Off Frequency)	7
2.3	Classifications for Active Suspension	8
	2.3.1 Classification Based on Suspension Location	8
	2.3.2 Classification Based on Degree of Control	9
	2.3.2.1 Fully-Active Suspension	9
	2.3.2.2 Semi-Active Suspension	9

	2.3.2.3 Semi-Passive Suspension	12
	2.3.3 Classification Based On Functions	13
2.4	Active Secondary Suspension Control Strategies	14
	2.4.1 Modal Control	14
	2.4.2 Linear Quadratic Gaussian (Lqg) Control	15
	2.4.3 $H\infty$ Control	17
	2.4.4 Fuzzy Control	18
	2.4.5 Inter-Vehicle Actuator Control	19
	2.4.6 Sky-Hook Damping Control	20
2.5	Conclusion	23
CHAPTER 3	RESEARCH METHODOLOGY	25
3.1	Introduction	25
3.2	Flow Chart	25
3.3	Mathematical modelling of a quarter car railway vehicle system	26
	3.3.1 Physical setup	26
	3.3.2 System parameters	27
	3.3.3 Equations of motion	28
	3.3.4 State space model	29
	3.3.5 Transfer function model	33
3.4	Active secondary suspension control strategy	34
	3.4.1 Proportional, integral and derivative (PID) controller:	37
	3.4.2 PID controller design	38
3.5	Tools needed	40
	3.5.1 Choice of software	40
CHAPTER 4	RESULTS AND DISCUSSION	41
4.1	Introduction	41
4.2	System analysis	41
4.3	Stability	42
4.4	System speed of response	43
	4.4.1 Open loop step response	43

	4.4.2	Definitio response	n of terms associated with the step	45
		4.4.2.1	System order	45
		4.4.2.2	System type	46
		4.4.2.3	Dc gain	46
		4.4.2.4	Damping ratio	47
		4.4.2.5	Natural frequency	47
		4.4.2.6	Settling Time	47
		4.4.2.7	Percent Overshoot	48
		4.4.2.8	Poles/Zeros location	49
4.5	Steady	y-state erro)r	49
4.6	Perfor	mance crit	teria	49
4.7	PID controller gains		50	
4.8	Simul	ation resul	ts	50
4.9	Chapt	er Summa	ry	54
CHAPTER 5	CON	CLUSION	AND RECOMMENDATIONS	55
5.1	Concl	usion		55
5.2	Recon	nmendatio	n and Future Works	55
REFERENCES				56
Appendices A - B			6 1 - 66	

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	The relationship between the directions of actuator force, relative damper velocity and the real damping force in a semi-active system.	11
Table 2.2	List of various cases (conventional and fractional) Skyhook control cases that are used for comparative assessment[3]	23
Table 3.1 Sy	mbols and meanings of variables used in active suspension model for skyhook	27
Table 3.2 Ve	chicle Parameters.	32
Table 3.3 Su	mmary of the ratio of the various outputs to various inputs	33
Table 3.4 Zi	egler-Nichols tuning using the oscillation method	39

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
Figure 2.1	Generalized active suspension concept, regenerated from[4]	6
Figure 2.2	A first order low pass filter cut-off frequency	8
Figure 2.3	A semi-active damping force-velocity diagram, Goodall and Mei[12]	11
Figure 2.4	Theories of semi- active and fully-active suspension control schemes, Goodall and Mei[12].	11
Figure 2.5	A local Modal control example[5]	15
Figure 2.6	Example of modal control scheme[5]	15
Figure 2.7	LQG control scheme[5]	17
Figure 2.8	$H\infty$ Control scheme	17
Figure 2.9	Example of PD fuzzy control scheme [5]	18
Figure 2.10	Fail-safe control scheme for active lateral suspension system[35]	20
Figure 2.11	Sky-hook suspension model.	21
Figure 2.12	Sky-hook damping practical implementation.	22
Figure 3.1	The flow chart diagram for developing the proportional, integral and derivative (PID) controller for skyhook damping System	26
Figure 3.2	Unicycle passive suspension model[41]	27
Figure 3.3	model of Air spring [41]	28
Figure 3.4	typical skyhook damping model	35
Figure 3.5	Practical implementation of skyhook	36
Figure 3.6	control strategy for skyhook[41]	36
Figure 3.7	active suspension model for skyhook[41]	37
Figure 4.1	System stability test using pole(G) command in MATALB	42
Figure 4.2	System stability test using eig command in MATALB	43
Figure 4.3	system step response command in MATALB	44

Figure 4.4	system step response results displaying rise time and peak time	44
Figure 4.5	system step response results displaying settling time and final value	45
Figure 4.6	pole-zero map	49
Figure 4.7 Sin	mulation block diagram for a closed loop system with a unity feedback	50
Figure 4.8 Si	imulation result for a closed loop system with a unity feedback	51
Figure 4.9	Simulation result for a closed loop system with a filter	51
Figure 4.10	simulation result for a closed loop system with a filter	52
Figure 4.11	Simulation block diagram for a closed loop system with a pid controller	53
Figure 4.12	Simulation result for a closed loop system with a pid controller	53
Figure 4.13	Simulation block diagram for a closed loop system with a pid controller and a filter	53
Figure 4.14	Simulation result for a closed loop system with a pid controller and a filter	54

LIST OF ABBREVIATIONS

LQG	-	Linear Quadratic Gaussian	
LQR	-	Linear Quadratic Regulator	
MPC	-	Model Predictive Control	
LMI	-	Linear Matrix Inequality	
GA	-	Genetic Algorithms	
MIMO	-	Multi-Input-Multi-Output	
UTM	-	Universiti Teknologi Malaysia	
Z-N	-	Ziegler–Nichols	
C-C	-	Cohen–Coon	
IMC	-	Internal Model Control	
G-P	-	Gain-Phase Margin	
Р	-	Proportional controller	
PI	-	Proportional Integral controller	
PD	-	Proportional Derivative controller	
PID	-	Proportional Integral Derivative controller	

LIST OF SYMBOLS

dB	-	decibel
km	-	Kilometre
km/h	-	Kilometre per hour
ω	-	Angular velocity
u	-	Control input
x	-	State Vector
ż	-	Derivative Of The State Vector With Respect To Time
У	-	Output Vector
u	-	Input Or Control Vector
Α	-	System Matrix
В	-	Input Matrix
С	-	Output Matrix
D	-	Feedforward Matrix
C _{pz}	-	Primary Damping
C _{rz}	-	Secondary Damping
k _{az}	-	Air Spring Change Of Area Stiffness
k_{pz}	-	Primary Spring Stiffness
k_{rz}	-	Secondary Reservoir Stiffness
k _{sz}	-	Air Spring Volume Stiffness
m_b	-	Vehicle Body Mass
m_t	-	Bogie Mass
m_{mp}	-	Mass Of Air Spring Mid-Point
z _b	-	Vertical Displacement For Bogie
z_{mp}	-	Vertical Displacement For Air Spring Mid-Point Mass
Zt	-	Random Track Input Displacement
Z_v	-	Vertical Displacement For Vehicle Body
\dot{Z}_{v}	-	Vertical Velocity For Vehicle Body
\ddot{Z}_{v}	-	Vertical Acceleration Of Vehicle Body
Ż _b	-	Vertical Velocity For Bogie

f _{act}	-	Active Force Input
\dot{z}_t	-	Random Track Input Velocity
C _{sky}	-	Gain Of The Skyhook Damping
K_p	-	Proportional controller gain
K_i	-	Integral controller gain
K_d	-	Derivative controller gain
k _{dc}	-	DC gain
ζ	-	Damping ratio
ω_n	-	Natural frequency
ωa	-	Damped natural frequency
M_p	-	Percent overshoot
π	-	Phi
S_p	-	Poles/Zeros location
Ηz	-	Hertz

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix A	Mathematical Proofs		61
Appendix B	Psuedo Code		66

CHAPTER 1

INTRODUCTION

1.1 Problem Background

The idea of active technology in rail automobiles has been analyzed theoretically and experimentally since the 1970s, but it has not yet finalized a convincing advance in practical application, as has been found, for instance, in the aircraft and automotive industries. The potential explanation for the failure to succeed in introducing and retaining active technology in rail automobiles is that it is costly. In relation to the passive solution, the active suspension system must prove to be at least as dependable and harmless. If, however, a definition can be identified that simultaneously handles good performance and reasonable costs, there is tremendous potential for future implementation. Active technology for railway automobiles extends the possibilities of enhancing the dynamic efficiency of the railway vehicle in comparison with the traditional passive approach. Of course, improvements in riding comfort, speed conduct and twisting capacity have a positive effect on the dynamic performance of the vehicle, which can, in turn, allow a greater vehicle speeds.

Active technology in rail automobiles may be used to accomplish one or many of the following objectives below.

- a) Improved passenger trip easiness,
- b) Maintaining good ride ease even if the vehicle's speed is improved,
- c) Maintain good ride ease even though track conditions are poorer,
- d) Cut wheel and rail wear to minimum with the aid of improved curve negotiation,

e) Maintain running constancy at very high vehicle speed.

For some scores of years now, active suspensions for railway automobiles have been under concern[1],While their applications are very limited in the operation of services[2]. However, it appears clear that they will realize widespread acceptance in due course, and on-going research investigations are very suitable for this purpose. Control may be useful either to enhance the secondary suspension performance (carbody to bogie), generally to improve the consistency of the ride, or to the primary suspension (bogie to wheelsets), and can operate in either direction in general (horizontal, vertical, roll, etc.)[3].

In an effort to show significant effect in compromising, the trade-off between ride quality vs track following, skyhook damping control concept is adopted. The skyhook damping proposed in this project is in a quarter-car model.

1.2 Problem Statement

Skyhook damping technique provides a deep improvement to the ride quality for straight track operation, but generates huge suspension deflections in reaction to long wavelength, deterministic characteristics such as curves and slopes, a feature that is not usually a major design issue for passive suspensions using conventional dampers.

Conventional skyhook damping uses high pass filter to achieve the balance between ride quality and track following. Here lead-lag compensator that acted as filter is proposed.

1.3 Research Objectives

The objectives of the research are:

- (a) To design a PID controller and a filter for conventional skyhook damping;
- (b) To design a lead lag compensator as filter for conventional skyhook damping;
- (c) To analyze the various characteristics of the obtained mathematical model and the designed controller.

1.4 Scope of the study

This study is limited to solutions for active secondary suspensions, for which the concept of absolute or Skyhook damping is well known. A quarter-car model, which represents the active secondary suspension setup in railway vehicles, is used in this study.

1.5 Organization of the report

The chapters of this thesis are organized as follows. The first chapter addresses the background, problem statements, research objective, and scope of the study. The theory and literature review of this project will further be explored in chapter two. It also discusses some controllers that are used in active suspension technology. The methodology in designing the controller by the use of MATLAB software in order to simulate the available data are discussed in chapter three while chapter four discusses the results obtained. Finally, chapter five provides a conclusion of the accomplished tasks so far and the future work.

REFERENCES

- 1. Goodall, R., Active railway suspensions: Implementation status and technological trends. Vehicle System Dynamics, 1997. **28**(2-3): p. 87-117.
- Bruni, S., et al., Control and monitoring for railway vehicle dynamics. Vehicle System Dynamics, 2007. 45(7-8): p. 743-779.
- Zolotas, A.C. and R.M. Goodall, New insights from fractional order skyhook damping control for railway vehicles. Vehicle System Dynamics, 2018. 56(11): p. 1658-1681.
- 4. Wickens, A. and S. Iwnicki, *A history of railway vehicle dynamics*. Handbook of railway vehicle dynamics, 2006: p. 5-39.
- Fu, B., et al., Active suspension in railway vehicles: a literature survey. Railway Engineering Science, 2020: p. 1-33.
- Jalili, N., Semi-Active Suspension Systems. The Mechanical Systems Design Handbook: Modeling, Measurement, and Control, The Electrical Engineering Handbook Series, 2001.
- 7. Anubi, O., D. Patel, and C. Crane III, *A new variable stiffness suspension system: passive case.* Mechanical Sciences, 2013. **4**(1): p. 139-151.
- Hu, Y., et al., Semiactive inerter and its application in adaptive tuned vibration absorbers. IEEE Transactions on Control Systems Technology, 2016. 25(1): p. 294-300.
- 9. Mei, T., A. Zaeim, and H. Li. Control of railway wheelsets-A semi-active approach. in The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks. 2019. Springer.
- 10. Kjellqvist, P., Modelling and design of electromechanical actuators for active suspension in rail vehicles. 2003.
- 11. ROTH, P.-A. and M. LIZELL, A lateral semi-active damping system for trains. Vehicle System Dynamics, 1996. **25**(S1): p. 585-598.
- 12. Goodall, R. and T. Mei, Active suspensions, Chapter 11 in Handbook of Railway Vehicle Dynamics. Taylor and Francis, 2006. **42**: p. 116.

- Hedrick, J.K., *Railway vehicle active suspensions*. Vehicle System Dynamics, 1981. 10(4-5): p. 267-283.
- 14. Valasek, M. and W. Kortüm, Semi-active suspension systems II, in The Mechanical Systems Design Handbook: Modeling, Measurement, and Control. 2001, CRC Press.
- Ballo, I., Comparison of the properties of active and semiactive suspension.
 Vehicle System Dynamics, 2007. 45(11): p. 1065-1073.
- Norinao, H., Active and semi-active suspensions smooth 300 km/h ride.
 Railway Gazette International, 1997: p. 241-242.
- Tanifuji, K., S. Koizumi, and R.-h. Shimamune, *Mechatronics in Japanese rail vehicles: active and semi-active suspensions*. Control Engineering Practice, 2002. 10(9): p. 999-1004.
- Goodall, R. and W. Kortüm, Active controls in ground transportation—A review of the state-of-the-art and future potential. Vehicle System Dynamics, 1983. 12(4-5): p. 225-257.
- 19. Gong, D., et al., *Effects of active primary suspension on vertical ride quality control of flexible car body and its comparison with those of active secondary suspension*. 2011.
- 20. Leblebici, A.S. and S. Türkay, *Track modelling and control of a railway vehicle*. IFAC-PapersOnLine, 2016. **49**(21): p. 274-281.
- Nagarkar, M., et al., *Multi-objective optimization of nonlinear quarter car* suspension system–PID and LQR control. Procedia manufacturing, 2018. 20: p. 420-427.
- Sugahara, Y., et al., Suppression of vertical bending and rigid-body-mode vibration in railway vehicle car body by primary and secondary suspension control: results of simulations and running tests using Shinkansen vehicle. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009. 223(6): p. 517-531.
- 23. Pacchioni, A., R.M. Goodall, and S. Bruni, *Active suspension for a two-axle railway vehicle*. Vehicle System Dynamics, 2010. **48**(S1): p. 105-120.
- SUGAHARA, Y., et al., Suppression of vertical vibration in railway vehicles by controlling the damping force of primary and secondary suspensions. Quarterly Report of RTRI, 2008. 49(1): p. 7-15.

- 25. Hirata, T., S. Koizumi, and R. Takahashi, *H∞ control of railroad vehicle active suspension*. Automatica, 1995. **31**(1): p. 13-24.
- Kamada, T., M. Mikazuki, and M. Nagai. Active vertical vibration suppression of railway vehicle by air actuators. in Proceedings of The 22st IAVSD Symposium, International Association for Vehicle System Dynamics, CD-ROM, Manchester, England. 2011.
- Kamada, T., K. Hiraizumi, and M. Nagai, Active vibration suppression of lightweight railway vehicle body by combined use of piezoelectric actuators and linear actuators. Vehicle system dynamics, 2010. 48(S1): p. 73-87.
- 28. Leblebici, A.S. and S. Türkay, *An H∞ and skyhook controller design for a high speed railway vehicle.* IFAC-PapersOnLine, 2018. **51**(9): p. 156-161.
- Orukpe, P.E., et al., Model predictive control based on mixed ℋ2/ℋ∞ control approach for active vibration control of railway vehicles. Vehicle System Dynamics, 2008. 46(S1): p. 151-160.
- 30. Mizumoto, M. and K. Tanaka, *Fuzzy sets and their operations*. Information and Control, 1981. **48**(1): p. 30-48.
- Guclu, R. and M. Metin, *Fuzzy logic control of vibrations of a light rail transport vehicle in use in Istanbul traffic*. Journal of Vibration and Control, 2009. 15(9): p. 1423-1440.
- Metin, M. and R. Guclu, Active vibration control with comparative algorithms of half rail vehicle model under various track irregularities. Journal of Vibration and Control, 2011. 17(10): p. 1525-1539.
- Sezer, S. and A.E. Atalay, *Application of fuzzy logic based control algorithms* on a railway vehicle considering random track irregularities. Journal of Vibration and Control, 2012. 18(8): p. 1177-1198.
- Mei, T.X. and R.M. Goodall, Use of multiobjective genetic algorithms to optimize inter-vehicle active suspensions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2002. 216(1): p. 53-63.
- 35. Park, J., et al., *A practical approach to active lateral suspension for railway vehicles*. Measurement and Control, 2019. **52**(9-10): p. 1195-1209.
- 36. Iwnicki, S., *Handbook of railway vehicle dynamics*. 2006: CRC press.
- Karnopp, D., Active damping in road vehicle suspension systems. Vehicle System Dynamics, 1983. 12(6): p. 291-311.

- 38. STRIBERSKY, A., et al., *Design and evaluation of a semi-active damping system for rail vehicles*. Vehicle System Dynamics, 1998. **29**(S1): p. 669-681.
- Yi, K. and B. Song, A new adaptive sky-hook control of vehicle semi-active suspensions. Proceedings of the Institution of Mechanical Engineers, part D: Journal of automobile engineering, 1999. 213(3): p. 293-303.
- 40. Oda, N. and S. Nishimura, *Vibration of air suspension bogies and their design*. Bulletin of JSME, 1970. **13**(55): p. 43-50.
- Ahmed, M., M. Hazlina, and M. Rashid, *Mathematical modeling and control* of active suspension system for a quarter car railway vehicle. Malaysian J. of Mathematical Sciences, 10 (S), 2016: p. 227-241.
- 42. Yusof, H.M., R.M. Goodall, and R. Dixon, *Active railway suspension controllers using electro-mechanical actuation technology*. 2010.
- 43. Chen, Y., et al., Hybrid fuzzy skyhook surface control using multi-objective microgenetic algorithm for semi-active vehicle suspension system ride comfort stability analysis. 2012.
- 44. Åström, K.J. and T. Hägglund, *PID controllers: Theory*. Design, and Tuning, 1995. 2: p. 59-120.
- 45. Tan, W., et al., *Comparison of some well-known PID tuning formulas*. Computers & chemical engineering, 2006. **30**(9): p. 1416-1423.
- 46. Cohen, G., *Theoretical consideration of retarded control*. Trans. Asme, 1953.
 75: p. 827-834.
- 47. Åström, K.J. and T. Hägglund, *Automatic tuning of simple regulators with specifications on phase and amplitude margins*. Automatica, 1984. **20**(5): p. 645-651.
- 48. Ho, W.K., C.C. Hang, and L.S. Cao, *Tuning of PID controllers based on gain and phase margin specifications*. Automatica, 1995. **31**(3): p. 497-502.