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ABSTRACT 

The work in this thesis proposed a control method for active technology in 

trains using skyhook damping control algorithm. The main advantage of the method 

is the good improvement of passenger ride comfort on straight track such that it can 

be computed rapidly using a highly effective controller which show significant effect 

in compromising the tradeoff between ride quality vs track following. The skyhook 

damping proposed in this project is presented in quarter car model. Conventional 

skyhook damping uses high pass filter to achieve the tradeoff between ride quality 

and track following. Here lead-lag compensator that acted as filter is proposed. 

MATLAB simulations are carried out under some conditions to test the effectiveness 

of the proposed method, namely step response, rise time and percentage over shoot. 

The advantage of the proposed method over the conventional skyhook damping is 

expected to increase by a significant percent in the train speed and a relative 

percentage decrease in the steady state oscillations. It is predicted that the method 

can be very useful in the design of a practical high performance, low cost controller 

of active suspension railway system. 
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ABSTRAK 

Kerja di dalam tesis ini mencadangkan kaedah kawalan bagi teknologi aktif 

menggunakan penyerap Skyhook algoritma kawalan. Kelebihan kaedah ini adalah ia 

dapat memperbaiki keselesaan penumpang yang menaiki keretapi tersebut  di trek 

yang rata di mana ia boleh di gunakan secara efektif. Pengawal yang mempunyai 

efektif yang tinggi menunjukkan kesan yang baik di dalam tolak ansur antara kualiti 

penumpang dan ikutan trek. Penyerap skyhook yang dicadangkan didalam tesis ini 

dilakukan didalam model suku kenderaan. Penyerap Skyhook konvensional 

menggunakan Penapis Lalu Tinggi (HPF) untuk mendapatkan pertukaran antara 

keselesaan penumpang dan ikutan trek. Di sini, pemampan lead-lag(depan-belakang) 

yang berguna sebagai penapis telah dicadangkan. Simulasi Matlab dijalankan  untuk 

mengkaji kebaikan kaedah yang dicadangkan iaitu respon unit langkah, masa naikan 

dan peratusan overshoot(terlebih tembakan). Kaedah ini dijangka dapat 

meningkatkan kadar efektif dan mengurangkan hayunan. Ia juga dijangka 

meningkatkan prestasi menggunakan kawalan yang murah untuk teknologi aktif bagi 

sistem keretapi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

The idea of active technology in rail automobiles has been analyzed 

theoretically and experimentally since the 1970s, but it has not yet finalized a 

convincing advance in practical application, as has been found, for instance, in the 

aircraft and automotive industries. The potential explanation for the failure to 

succeed in introducing and retaining active technology in rail automobiles is that it is 

costly. In relation to the passive solution, the active suspension system must prove to 

be at least as dependable and harmless. If, however, a definition can be identified that 

simultaneously handles good performance and reasonable costs, there is tremendous 

potential for future implementation. Active technology for railway automobiles 

extends the possibilities of enhancing the dynamic efficiency of the railway vehicle 

in comparison with the traditional passive approach. Of course, improvements in 

riding comfort, speed conduct and twisting capacity have a positive effect on the 

dynamic performance of the vehicle, which can, in turn, allow a greater vehicle 

speeds. 

Active technology in rail automobiles may be used to accomplish one or 

many of the following objectives below. 

a) Improved passenger trip easiness, 

b) Maintaining good ride ease even if the vehicle’s speed is improved, 

c) Maintain good ride ease even though track conditions are poorer, 

d) Cut wheel and rail wear to minimum with the aid of improved curve 

negotiation, 
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e) Maintain running constancy at very high vehicle speed. 

For some scores of years now, active suspensions for railway automobiles 

have been under concern[1],While their applications are very limited in the operation 

of services[2]. However, it appears clear that they will realize widespread acceptance 

in due course, and on-going research investigations are very suitable for this purpose. 

Control may be useful either to enhance the secondary suspension performance 

(carbody to bogie), generally to improve the consistency of the ride, or to the primary 

suspension (bogie to wheelsets), and can operate in either direction in general 

(horizontal, vertical, roll, etc.)[3]. 

In an effort to show significant effect in compromising, the trade-off between 

ride quality vs track following, skyhook damping control concept is adopted. The 

skyhook damping proposed in this project is in a quarter-car model. 

1.2 Problem Statement 

Skyhook damping technique provides a deep improvement to the ride quality 

for straight track operation, but generates huge suspension deflections in reaction to 

long wavelength, deterministic characteristics such as curves and slopes, a feature 

that is not usually a major design issue for passive suspensions using conventional 

dampers. 

Conventional skyhook damping uses high pass filter to achieve the balance 

between ride quality and track following. Here lead-lag compensator that acted as 

filter is proposed. 

1.3 Research Objectives 

The objectives of the research are: 
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(a) To design a PID controller and a filter for conventional skyhook damping; 

(b) To design a lead lag compensator as filter for conventional skyhook damping; 

(c) To analyze the various characteristics of the obtained mathematical model 

and the designed controller.  

1.4 Scope of the study  

This study is limited to solutions for active secondary suspensions, for which 

the concept of absolute or Skyhook damping is well known. A quarter-car model, 

which represents the active secondary suspension setup in railway vehicles, is used in 

this study. 

1.5 Organization of the report 

The chapters of this thesis are organized as follows. The first chapter 

addresses the background, problem statements, research objective, and scope of the 

study. The theory and literature review of this project will further be explored in 

chapter two. It also discusses some controllers that are used in active suspension 

technology. The methodology in designing the controller by the use of MATLAB 

software in order to simulate the available data are discussed in chapter three while 

chapter four discusses the results obtained. Finally, chapter five provides a 

conclusion of the accomplished tasks so far and the future work. 
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