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ABSTRACT 

Transformer is a magnetically coupled circuit, whose operation is governed by 

Faraday’s Law of electromagnetic induction. Transformers are also used in AC voltage 

transfer from one level to another. A step-up transformer raises the voltage from 

primary to secondary level, while a step-down transformer decreases the secondary to 

lower voltage. Transformers play a significant role in the power utility as it is the core 

of the high voltage transmission system. Transformer must always operate without fail 

and if one transformer fails due to fault, another transformer must take action to supply 

uninterrupted power (n-1 source) to consumer. To ensure n-1 criteria is met, 

transformers at transmission level are connected in parallel. To connect transformers 

in parallel, certain conditions need to be met and the conditions will be discussed in 

Chapter 1. This study will focus on one of the parallel criteria which is transformer’s 

topology or as known as vector group. Currently, Universiti Teknologi Malaysia 

(UTM) high voltage network are installed with two 30MVA 132/22kV transformers 

of same vector group which is YNd1. It should be no restriction to parallel these two 

transformers since they have same vector group. To examine the effect of paralleling 

two transformers of diverse topology, two transformers of different vector will be 

paralleled using MATLAB Simulink software. This network will then be simulated 

with potential fault event which in this case, will restrict to only short-circuit fault. 

This study will extend to analysing the network with the absence of earthing 

transformer that is connected at secondary side of 132/22kV transformer. Literature 

studies have also been conducted on the previous parallel transformer scenarios. The 

results of the simulation will be analysed in order to find out the effect of paralleling 

transformers with diverse topology. If the result is satisfactory and within limit, it can 

be applied in electricity industry.   
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ABSTRAK 

 Alatubah merupakan litar berpasangan magnet, yang operasinya adalah 

berpandukan kepada aruhan elektromagnetik ‘Faraday’s Law’. Alatubah biasanya 

digunakan untuk menukar voltan AC dari satu tahap ke tahap yang lain. Alatubah 

menaik meningkatkan voltan dari sisi primer ke tahap voltan yang lebih tinggi di sisi 

sekunder, sementara alatubah menurun mengurangkan sekunder ke tahap voltan yang 

lebih rendah. Alatubah memainkan peranan penting dalam sistem kuasa. Ia adalah 

komponen tulang belakang sistem penghantaran kuasa voltan tinggi. Alatubah 

mestilah beroperasi tanpa gagal dan jika salah satu alatubah mengalami kerosakan, 

alatubah lain mestilah mengambil alih untuk membekalkan kuasa elektrik tanpa 

gangguan (sumber n-1) kepada pengguna. Alatubah penghantaran biasanya 

disambungkan secara selari untuk memastikan kriteria n-1 dipenuhi. Keadaan 

penyambungan transformer secara selari akan dibincangkan dalam Bab 1.  Kajian ini 

akan melihat dengan lebih mendalam  kepada salah satu kriteria selari iaitu topologi 

alatubah atau lebih dikenali sebagai kumpulan vektor. Pada ketika ini, Voltan Tinggi 

Universiti Teknologi Malaysia (UTM) dilengkapi dengan dua alatubah 30MVA 

132/22kV kumpulan vektor yang sama iaitu YNd1. Seharusnya tidak ada batasan 

untuk kedua-dua alatubah ini disambung secara selari kerana mereka mempunyai 

kumpulan vektor yang sama. Untuk mengkaji kesan sambungan secara selari bagi dua 

alatubah dari topologi yang pelbagai, dua alatubah dari kumpulan vektor yang berbeza 

akan disambung secara selari dengan menggunakan perisian ‘MATLAB Simulink’. 

Litar ini kemudiannya akan disimulasikan dengan arus kerosakan yang mana dalam 

kes ini, hanya akan terhad kepada kerosakan litar pintas. Kajian ini juga akan 

menganalisa litar dengan ketiadaan alatubah pembumian yang disambungkan di sisi 

sekunder alatubah 132/22kV. Kajian literatur juga telah dibuat ke atas pelbagai kajian 

sebelum ini yang pernah dibuat penyambungan alatubah dalam keadaan selari. Hasil 

simulasi akan dianalisis untuk mengetahui kesan penyambungan alatubah dalam 

kedaan selari dengan topologi yang pelbagai. Sekiranya hasil memuaskan dan masih 

dalam limit yang dibenarkan, ia kemungkinan dapat diterapkan dalam industri elektrik. 
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INTRODUCTION 

1.1 Background of Study 

Transformer is one of the main equipment in TNB distribution system which 

can be categorised into power transformer and distribution transformer. Power 

transformer (7.5 MVA and above) is mainly used in PMU and PPU whilst distribution 

transformer (1000 kVA and below) is usually utilised in substation [1]. In the field of 

power utilities, the n-1 contingency power supply system is planned so that during 

fault event, the other transformer can automatically supply to the affected loads. 

According to IEEE Standard C57.152TM-2015, two or more transformers connected 

to common load buses should be taken into account in parallel. These common buses 

can be connected to all kinds of loads, as well as to capacitor banks, shunt reactors and 

power sources. The transformer primary windings can be linked to common buses or 

buses with electricity from different lines [2]. The operating of power transformers in 

parallel is a common occurrence. The objective is to minimize reactive current 

circulation between transformers caused by mismatches in their electrical 

characteristics. Numerous control systems have been developed over the years to 

optimize the functioning of paralleled transformers equipped with on-load tap changer 

(OLTC) [3]. The operation of parallel transformers contributes to improved system 

reliability and performance; hence it increases transformers' short circuit current. 

Transformer operates in parallel when load is increased and capability exceeds. 

In order to provide increased load, an additional transformer may be connected to the 

existing transformer in parallel. When bigger capacity of transformer is not available, 

two or more smaller transformers are put in parallel to replace bigger capacity of 

transformer to meet load requirement. Parallel transformer can also secure the security 

of supply especially when a fault occurs in one transformer, the other transformer can 

supply and backup to the affected loads while the faulty transformer can be taken out 
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for service [4].  The connections of transformer when connected in parallel is shown 

in Figure 1.1:  

 

Figure 1.1 Example of parallel connection of transformers 

Both transformers are interconnected in bus tie configuration. Low voltage side 

transformer’s busbar is connected between each other by bus tie. To parallel two 

transformers, bus tie circuit breaker is in close position. While to non-parallel 

transformers, bus tie circuit breaker is switched to open position. These two 

transformers (T1 and T2) are isolated from each other during non-parallel operation. 

In case of any breakdown or planned outage one of the transformers, bus section circuit 

breaker at LV side is closed in order to supply uninterrupted power supply to 

consumer. The breakdown transformer can be taken out for maintenance without 

interrupting supply. The IEEE Standard describes general needs for the parallel 

transformers. Transformers can be made parallel when transformer ratios of the 

reactance to the equivalent resistance of the secondary windings, relative impedances 

of transformers, phase sequence and phase shift are the same [2]. 

Obviously, it is virtually impossible to meet the requirements described under 

actual operation conditions because of potential difference in transformer 

characteristics and electrical network configuration. It is nearly impossible to fulfil the 

described requirements in actual operating conditions as a result of possible 

differences in electrical network transformer characteristics and configuration. The 

problem of transformers running parallel is of particular practical concern especially 

132kV bus 

22kV bus 
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when power supply of transformer primary windings from different power lines and 

difference of relative impedances of parallel transformers under change of transformer 

ratios [2].  

In this case, parallel transformers should meet the voltage control requirements 

of the load buses as a result of inappropriate transformer ratios. The circulating 

current should be minimized. These conditions should also be provided irrespective of 

changes in the power system configuration [5]. Many studies focus on the problem and 

control of paralleled power transformers. However, not any evidence on the impact on 

the parallel transformers of the power supply system configuration and the load 

connection layout [5-9]. 

1.2 Problem Statement 

Normally in any utilities practice, transformers will only be paralleled when 

they met the requirements for paralleling. The requirements are MVA rating, tap 

changer and vector group should be the same. Also, to parallel transformers, make sure 

that loading for each transformer is less than 50% of full capacity. 

Utility companies would not permit transformers to be paralleled when these 

requirements are not met. This is because if the transformers do not meet the conditions 

of paralleling transformers, then large circulating currents would flow between two 

transformers which are dangerous and unnecessary. This circulating current will keep 

circulating between transformers and does not contribute to load current. This 

circulating current can overheat the transformer and reduces the lifespan of the 

transformers [10]. In this study, we will examine the effect when transformers with 

diverse topology are paralleled together. This study can be implemented to real 

situation if the result comes out satisfactory. 
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1.3 Objectives 

The main objectives of this study are: 

(a) To evaluate utility’s current practice in paralleling transformers. 

(b) To analyse the output voltage and current using MATLAB Simulink by 

paralleling transformers of different topologies with earthing transformer and 

without earthing transformer during fault event by considering 4 types of short 

circuit fault (single line to ground fault, double line fault, double line to ground 

fault and three-line fault).  

(c) To validate the advantage and disadvantage of paralleling transformers with 

same and different topology. 

1.4 Scope 

The scopes of work considered in this research are summarized as follows: 

(a) This research will only focus on Universiti Teknologi Malaysia (UTM) High 

Voltage Network that comprises of two 30MVA 132/22kV transformers of 

vector group YNd1.  

(b) There are 3 topologies to be focused in this study which are: 

i. Two (2) 30MVA 132/22kV transformers of vector group YNd1. The 

primary winding of the transformer is connected in Wye/Star while 

secondary winding is connected in Delta connection.  

ii. Two (2) 30MVA 132/22kV transformers of vector group Dd1. The 

primary winding of the transformer is connected in Delta while 

secondary winding is also connected in Delta connection.  
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iii. Two (2) 30MVA 132/22kV transformers of vector group YNd1 and 

Dd1.  

(c) The fault event that will be simulated for this study is only on short-circuit fault 

comprises of single phase to ground, phase to phase, phase to phase to ground 

and three phase faults. 

(d) 22/0.415kV Zig-zag earthing transformer at low voltage side. This transformer 

is installed at the low voltage (secondary) side of power transformer. 

 

1.5 Thesis Outline 

 Chapter 1 explains the general background of transformer, parallel operation 

of transformers and types of fault. Other than that, project objectives and project scopes 

are also being emphasized in this chapter. 

 Chapter 2 focuses on the literature review related to the paralleling 

transformers with diverse topology. It will cover on the past studies on the paralleling 

method together with the benefits and drawbacks. Other than that, these studies will be 

highlighted in detail and being compared with other studies. 

 Chapter 3 discusses the methodology of the project and the proposed 

framework using MATLAB Simulink. 

 Chapter 4 highlights on the results of simulation by using MATLAB Simulink 

software for all topologies as mentioned in scope. The simulation will focus on 

paralleling transformers with same topologies and different topologies  

 Chapter 5 reviews the conclusion of paralleling transformers using 

MATLAB Simulink. This chapter will also discuss recommend for future works. 
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