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ABSTRACT 

There are several lung diseases such as pneumonia, asthma, tuberculosis, and 

fibrosis. The most recently, coronavirus disease 2019 (COVID-19), is rapidly 

spreading and cause a pandemic with a many of victims. The standard test method for 

diagnosis of the disease, described by World Health Organization (WHO), is Real-

time reverse transcription polymerase chain reaction (RT-PCR) which takes long from 

several hours to two days. In addition, considering some shortcoming of the testing by 

kit, such as limitation in number of kits, and probability to spread the virus during the 

test procedure depicts a necessary of presenting automatic diagnosis of COVID-19 

from medical imaging such as chest X-ray to control this dangerous pandemic. This 

study aims to develop and test several different deep learning models using 

Convolutional Neural Network (CNN)-based models as well as vision transformer 

(ViT) in image classification to automatically diagnose COVID-19 and other kinds of 

lung diseases using chest X-Ray as input image. In this thesis, different CNN-based 

deep learning models are proposed. This CNN-based models can be trained to classify 

chest X-ray images into three classes of COVID-19, normal chest X-ray and other lung 

diseases. The different proposed models will be trained with three-class balanced 

dataset which consists of 3000 images, 1000 images for each class. Besides, the binary 

classification between two classes of COVID-19 and normal chest X-ray is proposed. 

In addition of using CNN, two different models are trained with three-class dataset. 

Nine different models and their results is proposed with a comparison of their results. 

A publicly available dataset to train and test the CNN model is used from Kaggle- 

COVID-19_Radiography_Dataset. From the experiments, the accuracy of VGG16 

model is 93.44 % and ViT is 92.33 %. 
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ABSTRAK

Terdapat beberapa penyakit paru-paru seperti radang paru-paru, asma, batuk 

kering, dan fibrosis. Penyakit coronavirus 2019 (COVID-19) yang paling baru, 

merebak dengan cepat dan menyebabkan wabak dengan banyak mangsa. Kaedah ujian 

standard untuk diagnosis penyakit, yang dijelaskan oleh Pertubuhan Kesihatan 

Sedunia (WHO), adalah reaksi berantai polimerase transkripsi terbalik masa nyata 

(RT-PCR) yang memakan masa lama dari beberapa jam hingga beberapa hari. Di 

samping itu, mempertimbangkan beberapa kekurangan ujian oleh kit, seperti batasan 

jumlah kit, dan kebarangkalian menyebarkan virus semasa prosedur ujian, maka 

terdapat keperluan diagnosis automatik COVID-19 dari pengimejan perubatan seperti 

sinar-X dada untuk mengawal wabak berbahaya ini. Kajian ini bertujuan untuk 

mengembangkan dan menguji beberapa model pembelajaran dalam yang berbeza 

menggunakan model berdasarkan Rangkaian Neural Konvolusional (CNN) serta 

pengubah penglihatan (ViT) dalam klasifikasi gambar secara automatik mendiagnosis 

COVID-19 dan jenis penyakit paru-paru lain menggunakan sinar-X dada sebagai 

gambar input. Dalam tesis ini, model pembelajaran mendalam berasaskan CNN yang 

berbeza dicadangkan. Model berasaskan CNN ini dapat dilatih untuk 

mengklasifikasikan gambar sinar-X dada menjadi tiga kelas COVID-19, sinar-X dada 

normal dan penyakit paru-paru lain. Model yang dicadangkan berbeza akan dilatih 

dengan set data seimbang tiga kelas yang terdiri daripada 3000 gambar, 1000 gambar 

untuk setiap kelas. Selain itu, dicadangkan pengkelasan binari antara dua kelas 

COVID-19 dan sinar-X dada normal. Selain menggunakan CNN, dua model yang 

berbeza dilatih dengan set data tiga kelas. Sembilan model yang berbeza dan hasilnya 

dicadangkan dengan perbandingan hasilnya. Set data yang tersedia untuk umum untuk 

melatih dan menguji model CNN digunakan dari Kaggle- COVID-

19_Radiography_Dataset. Dari eksperimen, ketepatan model VGG16 adalah 93.44% 

dan ViT adalah 92.33%. 
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• Because of parallel data processing in Vision Transformer, as theoretically is

expected, ViT should be faster than pretrained VGG16 model. Comparing the

time of training the 3-classes classification models, in experiences 8-A and 8-

B of this project, with other pretrained models’ training time reveals that in this

3-class application using ViT model ‘Vit_base_patch16_224_in21k’ in

experience 8-B with 92.33 % accuracy in 14 minutes is more accurate and 

faster than model ‘Vit_base_resnet50_224_in21k’ and pretrained VGG16. 

5.2 Future Work 

Swin transformer is a hierarchical vision transformer using shifted windows. 

This hierarchical structure forms by starting from small-sized patches of the image and 

gradually merging the neighboring patches in deeper transformer layers. Partitioning 

an image with non-overlapping windows, which consist of fix number of patches, will 

have linear complexity of computation to image size during locally self-attention of 

these windows. Thus, Swin transformer can build hierarchical feature maps by 

merging image patches in deeper layers as well as linear complexity to input image 

size because of self-attention only within each local window.  

The chest X-ray image consists of images of different tissues of the body 

protected by the chest. In addition, in some cases the shape of cables or other 

equipment of medical caring can be seen in a chest X-ray image. Consequently, it 

causes to decrease the accuracy of a model because they are considered as image’s 

features of a class.   

Shifting of the window partition between consecutive self-attention layers is 

the main design element of this approach. Next layer is formed by shifting the 

partitioning window and self-attention in this new window crosses the boundaries of 

previous window in previous layer. 

In contrast, previous vision transformers produce feature map of a single low 

resolution and have quadratic computation complexity to input image due to 

computation of self-attention globally. 

There is a valuable work in this field [6] in which the authors have shown that 

Swin Transformer achieves the state-of-the-art performance on COCO object 
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detection and ADE20K semantic segmentation, significantly surpassing previous best 

methods. 

Similarly, Getting the benefit of the hierarchical vision transformer of Swin 

transformer can improved the ability of segmenting an image. It means, with less 

computational cost can focus on the specific sections by which can extract more 

dominant features of an input X-ray images related to a specific disease. There is the 

hope that Swin Transformer has strong performance on vision problems and it will 

encourage unified modeling of vision and language signals. 
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