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ABSTRACT 

Solar energy is one of the favourite renewable energies in Malaysia due to its 

relatively consistent power generation throughout the year. The solar panel price drops 

drastically compared to the last few decades, making it affordable to the public. In 

Malaysia, the government has introduced Feed-in-tariff (FiT) and Net Energy 

Metering (NEM) to catalyse renewable energy generation, mainly through solar 

energy. However, high penetration of solar energy has caused several electrical issues 

such as voltage fluctuation and the protection system's incoordination. In this research, 

the voltage stability of a bus in a distribution system containing photovoltaic systems 

are investigated by the concept of power flow of two bus model. The severity of 

reverse power flow in a distribution system is determined by the proposed index named 

Maximum Voltage Index (MVI). The main objectives of this report are to formulate a 

maximum voltage index that can predict the proximity to the maximum voltage of a 

bus due to reverse power flow from the photovoltaic generator; to validate the validity 

of the formulated index by using ETAP software; to analyse the voltage collapse event 

in radial type distribution power system due to reverse power from photovoltaic 

systems. The results show that MVI is able to predict maximum voltage event of 

distribution system satisfactorily. Hence, an early correction action can be taken to 

rectify the situation.  Lastly, MVI can be a useful indicator to predict maximum 

voltage and voltage collapse event for researchers as well as regulatory body. 
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ABSTRAK 

Tenaga suria adalah salah satu tenaga boleh diperbaharui gemar di Malaysia 

kerana penjanaan tenaga yang agak konsisten sepanjang tahun. Dimaklumkan bahawa 

harga panel suria turun secara drastik berbanding beberapa abad yang lalu, 

menjadikannya mampu dimiliki oleh orang ramai. Di Malaysia, pemerintah telah 

memperkenalkan Feed-in-tariff (FiT) dan Net Energy Metering (NEM) sebagai 

pemangkin kepada penjanaan tenaga boleh diperbaharui, terutamanya melalui tenaga 

suria. Walau bagaimanapun, penembusan tenaga suria yang tinggi telah menyebabkan 

beberapa masalah elektrik, seperti ketidakstabilan dan penyelarasan sistem 

perlindungan. Dalam penyelidikan ini, kestabilan voltan bas dalam sistem pengedaran 

yang mengandungi sistem fotovoltaik disiasat oleh konsep aliran daya dua model bas. 

Keterukan aliran daya terbalik dalam sistem pengedaran ditentukan oleh indeks yang 

dicadangkan bernama Maximum Voltage Index (MVI). Objektif utama tesis ini adalah 

untuk merumuskan indeks voltan maksimum yang dapat meramalkan jarak dengan 

voltan maksimum bas kerana aliran daya terbalik dari penjana fotovoltaik; untuk 

mengesahkan kesahihan indeks yang dirumuskan dengan menggunakan ETAP; untuk 

menganalisis kejadian kejatuhan voltan dalam sistem kuasa pengedaran jenis radial 

kerana daya terbalik dari sistem fotovoltaik. Hasil kajian menunjukkan bahawa MVI 

dapat meramalkan kejadian voltan maksimum sistem pengedaran dengan memuaskan. 

Oleh itu, tindakan pembetulan awal dapat dilakukan untuk memperbaiki keadaan. 

Terakhir, MVI boleh menjadi petunjuk berguna untuk meramalkan kejadian kejatuhan 

voltan dan voltan maksimum bagi penyelidik dan juga badan pengawal selia. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Grid-Connected Renewable Energy Distributed Generation  

The utilisation of electrical energy had driven the second industrial revolution, 

which replaced the first industrial revolution in the mid of 19th century. Since then, 

electrical energy becomes the most important form of energy in the modern society. 

The conventional electrical power generations using brown energy sources such as 

coal, oil and natural gas involve greenhouse gas emissions. Although fossil fuels are 

abundantly available and highly reliable, its negative impacts to the environment 

cannot be ignored because it is unsustainable. Green energy, as opposed to brown 

energy, is defined as energy derived from self-sustaining energy sources. Examples 

are solar energy, tidal energy, geothermal energy, wind energy and biomass energy.[1] 

The combustion of fossil fuel releases greenhouse gas causing global climate change 

and it is one of the main factors of global warming along with other factors like 

deforestation and increasing livestock farming. In order to curb climate change due to 

excessive greenhouse gas emission, green energy is introduced to replace brown 

energy as it is sustainable and environmentally friendly.  

According to [2], renewable energy capacity grows steadily over years. It is 

believed that this trend keeps growing at an accelerated scale. Solar energy is the 

frontrunner in term of annual additions of renewable power capacity. Therefore, high 

penetration of renewable energy is expected in power systems.  

The main factor of rising numbers of solar photovoltaic is falling of cost. Low 

price of solar photovoltaic panel has made the solar power more competitive to the 

other types of renewable energies. In the US, it is reported that residential solar 

photovoltaic system cost reduced 63% from 2010 to 2018. Around 57% of the 

reduction is due to a decrease of hardware cost. On top of that, soft cost like labour 
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cost and tax also dropped considerably. Additionally, commercial solar photovoltaic 

system cost plummeted 66% from 2010 to 2018. The main contributor for the 

reduction is a decrease of hardware cost which allocate 79% of the reduction [3].  

High penetration is often associated with reverse power flow. Reverse power 

flow occurs when the power generated from renewable distributed generators exceed 

the local power demand. Consequently, the excessive power flow into the grid in 

opposite direction to normal. This occurrence can be explained by the intermittent 

characteristic of renewable energies as renewable energies generation are highly 

dependent on ambient conditions such as temperature and solar irradiation for solar 

photovoltaic system and wind speed and air density for wind turbine. Distributed 

renewable energy generators cause incoordination of the electrical protection systems 

because fault level current is changed depending on the degree of reverse power flow 

and the model of generators. [4]  

 In addition, voltage imbalance occurs due to non-uniform distribution of 

distributed generators to the utility grid. During off-peak period, voltage rise of 

electrical system occurs due to excess power injection. The voltage rise may violate 

the voltage upper limit set by the utility company. In [5], more technical challenges 

are mentioned such as voltage regulation, line overloading, flickering and harmonics. 

Many literatures studied and proposed solutions to counter the above-mentioned 

issues. [6] stated the importance of minimisation of imbalanced voltage and present 

mathematical model and algorithm to reduce voltage imbalanced. In [7][[8], they 

showed that active power and reactive power have direct relationship with voltage 

profiles in radial type distribution system. The effect of distributed generations on 

power quality is investigated by[9]. Literature in [10] addressed that traditional 

structure of power system which the system is designed for one-way flow of power are 

greatly affected by high penetration of distributed photovoltaic system in term of 

voltage regulation mechanism.  
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1.2 Indices and Solutions to Address Stability Issue of Power System 

Voltage magnitude alone is not sufficient to determine the status of a power 

system. Authors in [11] propose L-index of load buses for the determination of Static 

VAR Compensator (SVC) placement deriving from static voltage stability analysis. 

The higher the index, the more instable of the bus. The proposed methodology has 

been shown effective on customized network and a practical 24 bus extra high voltage 

power system. A new approach called Revamp Voltage Stability (RVSI) Indicator was 

proposed by [12]. RVSI is derived from the equation of current flow through sending 

end and receiving end of 2 bus system. By using the index, level of vulnerability of 

the system can be acquired. It can be used for placement determination for both 

distributed generation and SVC. The index is tested under IEEE 14 bus system with 

1.8 times of base loading to simulate heavy loaded situation. The approach 

successfully reduces the index after SVC and distribution generation placing at the 

weak bus determined by the approach.  

Another innovative method was proposed by [13], where the voltage of the 

power system is regulated by combined SVC and PV inverter. When the voltage falls 

below the limit, the inverter injects reactive power into the grid according to its rating 

to rise the output voltage, while the voltage is higher than the limit, the inverter absorbs 

reactive power, but this is limited because the inverter cannot absorb reactive power 

more than its rating. In this situation, SVC take place to absorb the reactive power. 

However, the inverter cannot take the role as a voltage regulator like in the day time 

because no power harvested from the sun, unless battery bank is considered.  

Proper placement of distributed generation (DG), SVC and capacitor banks is 

critical and emphasised by many researches. Many researchers develop algorithms and 

various indexes as the methods to analyse the best placement of DG and SVC. In [14], 

the authors use genetic algorithm to find out the best location to place SVC in 33/11kV 

distribution substation with eleven buses, containing two power transformers with 

3MVA and four distribution transformers with four static loads. Genetic Algorithm 

(GA) is an optimization algorithm inspired by biological principles of evolution. GA 

randomly samples the whole design space and then ameliorate the found design point 
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by employing genetics-based principles and probabilistic selection criteria. The other 

searching algorithm is Particle Swarm Optimisation (PSO) which is used in [15]. The 

algorithm is motivated by the activities of bird flock to search for food. In the searching 

process, the algorithm generates a group of random particles to search for the best 

fitness value. The result of the literature shows that placing distributed generation and 

SVC at the right place and identifying the optimal size can remarkably enhance the 

voltage profile. It is also revealed that DG is better in loss reduction compared to SVC. 

The best side of PSO is that few and no assumption have to be made but it does not 

guarantee an optimal solution can be found.  

1.3 Roles of FACTS in Power System Research Goal 

A Static VAR Compensator (SVC) is a type of Flexible Alternating Current 

Transmission System (FACTS) device, which utilises power electronics like Thyristor 

to control the reactive power flow in a power system. The reactive power from SVC 

is adjusted to control parameters of power system such as voltage level. SVC contains 

reactor bank and capacitor bank and their current are controlled by the thyristors.  

 There are four main types of SVC, namely Thyristor controlled reactor (TCR), 

fixed capacitor thyristor reactor (FC-TCR), thyristor switched capacitor (TSC) and 

thyristor-controlled reactor-thyristor switched capacitor (TCR-TSC). TCR is 

connected to thyristor in each phase. Reactive power is adjusted by controlling the 

current through the reactor by using the thyristors. FC-TCR combined TCR and fixed 

capacitor bank. This type of SVC is often used in sub-transmission and distribution 

system. TSC contains a shunt capacitor bank and it is divided into several branches. 

Each branch is independently switched on or off through anti-parallel connected 

thyristors. TCR-TSC is a combination of TCR and TSC. The advantage of this type 

SVC is that it can provide a smooth reactive power control at very wide range due to 

both capacitor bank and reactor bank are fully under control.  

The benefits of FACTS device are stated in [16] and FACTS have been shown 

to be a viable solution to improve the performance of a power system.  Based on the 
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IEEE definition, SVC is a shunt connected static var generator or absorber which is 

able to adjust its output reactive power to maintain or control specific parameters of 

electrical power system like bus voltage, frequency and others. SVC employs power 

electronics such as thyristor to control its output reactive power flow for voltage 

regulation, reactive power control and transient stability improvement of the system. 

Moreover, integrating SVC with existing power system reduces the number of new 

facilities needed as it extends the loadability of existing power system.  

1.4 Voltage Stability of Distribution System 

In this report, voltage stability of distribution system is the main topic to be 

discussed. Voltage stability is defined as the ability of the power system retain the 

voltages within statutory limits. In Malaysia, the maximum voltage fluctuation 

allowed due varying solar radiation is 6% for both low voltage and medium voltage 

system.[17] In recent years, voltage stability of distribution system becomes the 

concern of power system planners and researchers due to rising numbers of grid-

connected distributed generation because instability of voltage will lead to voltage 

collapse.   

In Malaysia, the number of renewable energy distributed generation is 

increasing over the years and this can be attributed to Feed-in Tariff (FiT) and Net 

Energy Metering (NEM) schemes which promote utilisation of renewable energy in 

the public. There are several types of devices used in voltage regulation, namely On-

load tap changer (OLTC) and static var compensator. OLTC regulates voltage levels 

by changing number of turns in the one winding of a transformer. Thus, different ratio 

of the transformer generates different level of voltages [18]. 
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1.5 Problem Statement 

The rising number of distribution generations in power system post many 

technical challenges to power engineer as well as utility companies. One of the most 

challenging issues is voltage instability due to reverse power flow from renewable 

distributed generations. The intermittent nature of renewable power generation makes 

the issue more complicated.  

The voltage stability of distribution system needs to be assessed and the 

problem needs to be mitigated promptly. Otherwise, cascading breakdown of power 

generation may occur and this may lead to total blackout or severe voltage collapse. 

Although existing voltage stability indices have been developed to determine the point 

of voltage collapse in transmission system, to my knowledge, there are no voltage 

stability indices are proven effective for use in radial type distribution system. Some 

of the indices’ assumptions are not suitable for radial type distribution system have yet 

to be demonstrated. For example, Line stability factor (LQP) index developed by 

making an assumption of line reactance is greater than line resistance is not a common 

case for radial type distribution system since radial type distribution system has higher 

resistance to reactance ratio. This can be explained by the length of line in distribution 

system is much shorter than transmission system while line reactance is the function 

of line length, and geometry arrangement of transmission cables. Next, an index called 

Fast Voltage Stability Index (FVSI) assumes the voltage angle between sending bus 

and receiving bus is zero. This assumption is not applicable for radial type distribution 

system containing high reverse power flow because the voltage angle between sending 

and receiving bus is large. Therefore, the formulation of a Maximum Voltage Index 

(MVI) for use in radial type distribution system is required.  
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1.6 Research Objective 

In light of a large magnitude of reverse power flow from the increasing number 

of photovoltaic generations, an approach to determine the voltage stability of the 

system is critical. The research goal is to formulate a suitable index to predict the 

voltage stability for a radial type distribution system which contain distributed 

photovoltaic generations.  

The primary goal of this study is to predict maximum voltage occurrence in 

distribution system due to reverse power flow from distributed photovoltaic 

generation. Several objectives are needed to achieve the goal and they are as follows: 

(a) To formulate an index that can predict the proximity to maximum voltage event

of a radial type distribution power system

(b) To validate the validity of the formulated index by using ETAP software

(c) To analyse the voltage collapse event in radial type distribution power system

due to reverse power from photovoltaic systems.

1.7 Research Scope 

The research work focuses on the prediction of maximum voltage occurrence 

and voltage collapse in distribution system due to reverse power flow. MVI is verified 

on IEEE 33-bus 12.6kV radial type distribution. The simulations are carried out by 

using Newton Raphson method in Electrical Transient Analyzer Program (ETAP) 

12.6.0 and results are plotted by Microsoft Excel 2019. 
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1.8 Report Organisation 

Chapter one introduces a brief background of technical challenges and current 

solutions to tackle the problems. Challenges brought by photovoltaic system in term 

of voltage stability and the motivation of the research work are also discussed in the 

chapter. Chapter two gives an overview of power system stability and a review of 

voltage stability indices. Next, chapter three focuses on the formulation of MVI that 

being proposed maximum voltage prediction. Chapter four justifies the formulated 

index with simulation results as well as discussion on the results. Lastly, chapter five 

concludes the research work and provide suggestions for future works. 
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