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ABSTRACT 

Considering Moore's law requires transistor scaling, we have now entered the 

nanoscale era, which brings with it new challenges. Fin-shaped Field-Effect 

Transistors (FinFETs), the current transistor technology, is not up to the challenge 

when we descend below the 7 nm scale. The short channel effect downgrades the 

system performance and reliability as the MOSFET is scaled down further. For 5 nm 

technology node and beyond, nanosheet FET (NSFET) is an alternative architecture 

that compensates for this limitation due to superior short channel control at a smaller 

footprint. NSFET can give more effective width, and therefore current, by stacking 

nano sheet atop one another. In this project, the research gap and past efforts on 

showing the superiority of NSFET over FinFET were discussed. Using the Sentaurus 

tool from Synopsys, a three-stacked NSFET 3D structure with sheet thickness of 7nm 

was created and characterised. The NSFET is being build based on the parameters as 

per suggested from the reference. The simulation is being validated to the reference. 

This work is focus on the characteristic of a p-channel NSFET and the analog 

parameters of the NSFET. Simulation of the electrical characteristics for the NSFET 

includes current voltage characteristics and extract the electrical parameters such as 

threshold voltage (Vt), ON-current (Ion), OFF-current (Ioff) ON-OFF current ratio 

(Ion/Ioff), subthreshold slope (SS), transconductance (gm) and output resistance (Ro). 

The data collected to be utilised to develop NSFET circuits A p-type and n-type 

NSFET is being combined to build an inverter. Under the same footprint, NSFETs are 

expected to have superior current drivability and gate-to-channel controllability than 

FinFETs, resulting in higher intrinsic gain for circuit applications.  
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ABSTRAK 

Dalam pertimbangan undang-undang Moore memerlukan penskalaan 

transistor, kami kini telah memasuki era skala nano, yang membawa bersamanya 

cabaran baharu. Transistor Kesan Medan berbentuk sirip (FinFETs), teknologi 

transistor semasa, akan menghadapi cabaran apabila kita turun di bawah skala 7 nm. 

Kesan saluran pendek menurunkan prestasi dan kebolehpercayaan sistem apabila 

MOSFET diperkecilkan lagi. Untuk nod teknologi 5 nm dan seterusnya, nanosheet 

FET (NSFET) adalah seni bina alternatif yang mengimbangi had ini, disebabkan 

kawalan saluran pendek yang unggul pada jejak yang lebih kecil. NSFET boleh 

memberikan lebih banyak Weff, dan oleh itu terkini, dengan menyusun helaian nano 

atas satu sama lain. Dalam projek ini, jurang penyelidikan dan usaha lepas untuk 

menunjukkan keunggulan NSFET berbanding FinFET telah dibincangkan. 

Menggunakan Sentaurus daripada Synopsys, struktur 3D NSFET tiga susunan dengan 

ketebalan kepingan 7nm telah dicipta dan dicirikan. NSFET dibina berdasarkan 

parameter seperti yang dicadangkan daripada rujukan. Simulasi tersebut disahkan 

berbanding dengan rujukan. Kerja ini memberi tumpuan kepada ciri NSFET saluran p 

dan parameter analog NSFET. Simulasi ciri elektrik untuk NSFET termasuk ciri voltan 

semasa dan mengekstrak parameter elektrik seperti voltan ambang (Vt), arus ON (Ion), 

arus OFF (Ioff) nisbah arus ON-OFF (Ion/Ioff), subambang. cerun (SS), 

transkonduktans (gm) dan rintangan keluaran (Ro). Data yang dikumpul untuk 

digunakan untuk membangunkan litar NSFET NSFET jenis p dan jenis n sedang 

digabungkan untuk membina penyongsang. Di bawah jejak yang sama, NSFET 

dijangka mempunyai kebolehgerakan arus yang unggul dan kebolehkawalan pintu ke 

saluran berbanding FinFET, menghasilkan keuntungan intrinsik yang lebih tinggi 

untuk aplikasi litar. 
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CHAPTER 1  

 

 

INTRODUCTION 

This chapter will discuss about the introduction of the project including project 

background, problem statement, objectives and scope of study of the project. 

 

 

1.1 Problem Background 

The current microprocessor is one of the most complicated systems in the 

world, but, inside this complicated system is only the very simple device, which is the 

transistor. In today's microprocessors, there are billions of them, and they're practically 

all the same. As a result, the most basic approach to make microprocessors and the 

computers work better and less power consumption is to improve their performance 

and density. Nowadays, Moore's Law no longer has a clear physical definition, 

although it does indicate the degree to which integrated circuit features and devices 

are downsized. 

Since the invention in 1959, the metal oxide semiconductor field-effect 

transistor, or MOSFET, the type of transistor used in microprocessors has included the 

same basic structures: the gate stack, the channel region, the source electrode, and the 

drain electrode, despite changes in shape and materials. We need both the n-type and 

p-type transistors of the CMOS technology to build up today’s computer 

chips.[1][27][28] 

On the other hand, making smaller and better transistors is growing more 

difficult and costly. When we get below the 7nm size, fin-shaped Field-Effect 

Transistors (FinFETs), a transistor technology that has been used in the industry since 



 

2 

2011, are no longer up to the task [1].  Figure 1.1 displays the three-dimensional 

construction of a FinFET device, in which the gate surrounds the channel region on 

three sides, providing better control and preventing current leakage as compared to a 

planar transistor. 

 

Figure 1.1 3D structure of FinFET device [1] 

There is always a trade-off, more width allows you to drive more current and 

turn off a transistor more quickly, but this also leads to a more complex and costly 

manufacturing procedure. In a planar device, you can achieve this trade-off by altering 

the channel shape. Fins, on the other hand, do not provide as much flexibility. Metal 

interconnects that connect transistors together to construct circuits are built in layers 

above the transistors. Another drawback of the FinFET is that the gate only surrounds 

the rectangular silicon fin on three sides, leaving the bottom side connected to the 

silicon body. When the transistor is turned off, some leakage current can flow. Many 

experts believed that, to complete control over the channel region, the gate required to 

entirely enclose it. [1][29][30] 
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From here, Nano Sheet FET (NSFET) comes into the picture as to compensate 

the weakness of FinFET. The nanosheet structure is a good candidate to replace 

FinFET at the 5 nm technology node and beyond. [2][25][26] It offers more Weff per 

active footprint and better performance than FinFET, as well as a simpler modelling 

method based on EUV lithography [1]. NSFETs can produce more Weff and 

consequently current by stacking nanosheets on top of one another, as seen in Figure 

1.2. The gate must completely wrap the channel region to gain absolute control over 

it, as seen in the NSFET device structure in Figure 1.2. The gate now surrounds the 

channel regions from all sides completely, providing even better control than the 

FinFET. NSFETs are expected to have better current drivability and gate-to-channel 

controllability than FinFETs in the same footprint, resulting in higher intrinsic gain for 

circuit applications, which is the focus of this research. 

 

Figure 1.2 3D structure of a stacked Nano Sheet FET (NSFET) [1] 
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1.2 Problem Statement 

NSFET devices in the 7nm and below nodes have been the subject of numerous 

studies. NSFET's applicability had already been proved in previous experiments on a 

variety of device configurations. However, there is a knowledge gap in this area since 

additional research into the electrical circuit parameters of NSFETs is required. From 

the literature, we could see that the researchers mostly discuss on the n-channel 

NSFETs, there are less study on the p-channel as there are still a lot on study going on. 

The research will mainly focus on p-channel NSFET as there are the similar research 

study on n-channel NSFET. Characterization of p-channel NSFET is done in the study.  

 

1.3 Research Objectives 

The objectives of the research are: 

(a) To generate the NSFET device structure (n-channel, p-channel) 

(b) To study the characteristic of a p-channel NSFET  

(c) To analyse the analog parameters of NSFET 

(d) To build the NSFET-based inverter 

 

 

 

1.4 Research Scopes 

This research focuses on the analysis of electrical properties of NSFET based circuit. 

The research scopes of this study are listed as follows:  

 



 

5 

a) Generate the NSFET devices with 3 stacks of Nano Sheet and device 

parameters as suggested in previous study.  

b) Simulation of the electrical characteristics for the NSFET includes current-

voltage characteristics and extract the electrical parameters such as threshold 

voltage (Vt), ON-current (Ion), OFF-current (Ioff) ON-OFF current ratio 

(Ion/Ioff), subthreshold slope (SS), transconductance (gm) and output 

resistance (Ro). 

c) Build of inverter with the n-channel and p-channel NSFET  

 

1.5 Report Outline 

There are five chapters in this report. In Chapter 1, there have include project 

introduction, problem background, problem statement, research objectives, study 

scopes and report outline. The literature review on the FinFET's limitations and 

NSFET's strengths based on device and circuit performance on the 10 nm and lower 

manufacturing nodes of prior work studies will be discussed in Chapter 2.   

In Chapter 3, the research approach for building an NSFET device's structure, 

validating, and simulating both the device and inverter, as well as project planning, 

will be detailed. The major tool for conducting the designs and simulations is also 

covered in this chapter. In Chapter 4, the result and discussion work are presented. 

Finally, Chapter 5 presents the research's conclusion and future recommendations. 
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