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ABSTRACT 

Malaysia is famed for its beautiful bio-diverse forest and its bird species, some of it is 

still understudied. Using acoustic detection, we can study these bird as current 

advanced in machine learning application have resulted in cutting edge performance 

for acoustic classification application. However, most of these applications need large 

amount of data for prediction to have acceptable accuracy. We, however, do not have 

this kind of resources. This situation is experienced by large demographic of this 

country, which provide importance to our studies. Adding to that problem, one 

common issue that come with studying of species is that we can only know the status 

of species in a habitat up to certain point. Such problem needs to be solve using 

methodologies that can cope with the fluidity of information. As such, we propose 

neural network framework that able to notice any changes in the class categories and 

learn new classes on the fly. To solve our issue, we seek to design a Siamese Style 

convolutional Neural Network for one-shot-learning architecture. Additionally, we 

would train it using base convolutional neural network with low complexity so that it 

can be realistically implement in hardware of low computing power. We evaluated and 

benchmarked our framework, showing promising results as the Network is able to 

classify trained bird species with accuracy of 90% or higher with only around 100 

sound clips per bird species. Additionally, it is able to detect new bird species on the 

fly and add it to its class successfully, however, it still needs some work as the accuracy 

is around 50% on this part. All of these is achieved using base Convolutional Neural 

Networks of low complexity with only 4 layers of conv layers and 2 layers of fully 

connected layers. From this thesis, It is shown that this neural network can work and I 

am optimistic that this work can be further improved, which can be done by using a 

higher variety of dataset and transfer learning and a further tweaking of the base neural 

network architecture. 
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ABSTRAK 

Malaysia terkenal dengan hutan bio-pelbagai yang indah dan spesies burungnya, 

sebahagian daripadanya masih belum dipelajari. Menggunakan pengesanan akustik, 

kami boleh mengkaji burung ini kerana terkini dalam aplikasi pembelajaran mesin 

telah menghasilkan prestasi canggih untuk aplikasi klasifikasi akustik. Walau 

bagaimanapun, kebanyakan aplikasi ini memerlukan sejumlah besar data untuk 

ramalan mempunyai ketepatan yang boleh diterima. Kami, bagaimanapun, tidak 

mempunyai sumber seperti ini. Keadaan ini dialami oleh demografi besar negara ini, 

yang memberikan kepentingan kepada kajian kita. Menambah kepada masalah itu, 

satu isu biasa yang datang dengan mengkaji spesies ialah kita hanya boleh mengetahui 

status spesies dalam habitat sehingga tahap tertentu. Masalah sedemikian perlu 

diselesaikan menggunakan metodologi yang boleh mengatasi kecairan maklumat. 

Oleh itu, kami mencadangkan rangka kerja rangkaian saraf yang dapat melihat 

sebarang perubahan dalam kategori kelas dan mempelajari kelas baharu dengan cepat. 

Untuk menyelesaikan isu kami, kami berusaha untuk mereka bentuk Rangkaian Neural 

Konvolusi Gaya Siam untuk seni bina pembelajaran sekali sahaja. Selain itu, kami 

akan melatihnya menggunakan rangkaian neural convolutional asas dengan kerumitan 

rendah supaya ia boleh dilaksanakan secara realistik dalam perkakasan kuasa 

pengkomputeran rendah. Kami menilai dan menanda aras rangka kerja kami, 

menunjukkan hasil yang menjanjikan kerana Rangkaian dapat mengklasifikasikan 

spesies burung terlatih dengan ketepatan 90% atau lebih tinggi dengan hanya sekitar 

100 klip bunyi bagi setiap spesies burung. Selain itu, ia dapat mengesan spesies burung 

baharu dengan cepat dan berjaya menambahkannya ke kelasnya, namun, ia masih 

memerlukan sedikit usaha kerana ketepatannya adalah sekitar 50% pada bahagian ini. 

Semua ini dicapai menggunakan Rangkaian Neural Konvolusi asas dengan kerumitan 

rendah dengan hanya 4 lapisan lapisan penukaran dan 2 lapisan lapisan bersambung 

sepenuhnya. Daripada tesis ini, Ia menunjukkan bahawa rangkaian saraf ini boleh 

berfungsi dan saya optimis bahawa kerja ini boleh dipertingkatkan lagi, yang boleh 

dilakukan dengan menggunakan pelbagai set data dan pembelajaran pemindahan yang 

lebih tinggi dan pengubahsuaian lanjut seni bina rangkaian neural asas. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Malaysia is widely recognised for its biodiverse rainforest ecosystem, which is home 

to a plethora of uncommon bird species. Because of the difficulty in monitoring these 

species, they are frequently understudied. Nonetheless, researching these avian 

behaviours is critical for numerous possible uses in conservation, ecology, and 

archiving. This necessitates the usage and development of remote monitoring sound 

recording instruments and acoustic analysis software. 

Any type of automated classification of bird sound data gained from rainforest 

recordings would be of great use in the area of ornithology. Avian communication 

through sounds is frequently the quickest and most important means for ornithologists 

to discover birds. Bird calls are one of the most important forms of communication for 

birds since they may be used for a variety of goals such as intimidation, reproduction, 

or making their presence known in general. Recordings acquired from the environment 

frequently contain considerable background noise that must be removed. Furthermore, 

manual identification of bird species is dependent on the competence level of 

individual specialists and, as a result, might be unreliable. 

As a result of the widespread availability of automated recording units (ARUs), 

research into automatic categorization of bird species by bioacoustics has grown in 

popularity (Digby et al. 2013, Shonfield et al. 2017). These technologies provide rapid, 

efficient, and non-intrusive monitoring of rainforest bird species. However, when it 

comes to conducting an effective bird acoustic survey in the field, we still face a few 

challenges. The problems were as follows: (a) inability to recognise new species, (b) 

vast bird sounds database required, and (c) automatic bird categorization software 

installed in ARUs may cause slowdown or severe battery drain. 
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 To that purpose, we propose looking into the Siamese neural network 

framework's potential to do one-shot learning. Utilizing One-shot Learning, neural 

network frameworks may "learn" to recognise new classes by merely viewing a single 

sample and using it to make accurate inference to that specific class (Lungu et al. 2020, 

Koch et al. 2015). This approach is well-studied in the realm of image classification 

but understudied in the domain of audio classification. The goal behind this proposal 

is to modify the one-shot learning approach to address the underlying issue of detecting 

new species and the requirement for a big dataset for training. The primary goal of this 

project is to (a) create a framework that can detect and adapt to changes in the class 

dictionary, allowing the framework to essentially learn on the fly, (b) achieve 

acceptable performance while training with a small amount of data, and (c) do all of 

this without compromising performance when installed in an ARU. 

1.2 Problem Background 

Malaysia is well-known for its magnificent bio-diverse forests and uncommon 

bird species. However, due to the variety of Malaysia's forest, numerous bird species 

remain unstudied. For example, there are around seventeen species of owl in Malaysia 

that are currently understudied (Puan et al. 2016), and our knowledge and 

comprehension of the ecology of these owl species is limited. This makes maintaining 

and safeguarding the habitats of bird species challenging, posing a threat to their 

existence. 

Birds are highly sensitive to their surroundings, therefore studying them may 

reveal valuable information about their ecosystem. There are several methods for 

tracking birds in the jungle. One of them is keeping an eye on them via their calls. 

Birds are very loud creatures, and their calls serve a variety of functions, including 

attracting mates, intimidating predators, and communicating. Point counting is a 

popular approach for monitoring and assessing birds. This approach is done by having 

ornithologists record any observed species on the field. The difficulty is that 

ornithologists cannot perform this 24/7, and it is extremely dependent on the expertise 

of individual specialists (Scott et al 2008). 
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Monitoring with Autonomous Recording Units (ARUs), which are embedded 

devices built specifically to capture sound, is the next best thing to manual approaches 

(Wilhite et al. 2020). These ARUs are planted at various points around the forest, and 

bird calls captured this way may be processed and analysed later in the lab. 

Kaleidoscope is the industry standard software for sound data analysis; it is a highly 

specialised instrument for processing and identifying recognised species. However, 

this programme has a few drawbacks. Like with every specialised instrument, it must 

be operated by a professional. Furthermore, using this programme is not only time-

consuming, but also difficult to use when recognising new species (Knight et al. 2017, 

Dema et al. 2017, Jean at al. 2021). As a result, any innovative ways of analysing 

sound data are encouraged. 

Several methods have been developed to automatically analyse bird sound 

recordings (Stowell et al. 2016, Digby et al. 2013). In recent years, neural networks 

and deep learning models have grown in popularity for detecting and classifying 

auditory events (Mesaros et al. 2010, Parascandolo et al. 2016). As a result, a growing 

number of automated bird sound detection systems employ this concept (Chandu et al. 

2020, Bedoya et al. 2021, Rong et al. 2012, Xie et al. 2019).  However, there are certain 

challenges to solve when using the Neural Network architecture for efficient bird 

sound monitoring in the forest. For example, when it comes to unknown species, 

normal techniques would struggle to identify it (Stowell et al. 2014). Furthermore, 

deep learning approaches require a big sound database in order to work correctly 

(Bedoya et al. 2021). Another impediment is the ability to use on-board deep learning 

in systems with limited computing capability, such as ARUs (Acconcjaioco and 

Ntalampiras 2020). For example, when it comes to identifying animals, we frequently 

presume that we already have a substantial quantity of data about the species we are 

classifying. There has been very little research on developing a framework for 

classifying unknowns. 

In conclusion, techniques for detecting new classes of bird sounds when vast 

amounts of data are absent are mostly unexplored. 
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1.3 Problem statement 

We need a neural network framework that can (a) train with a small dataset, (b) detect 

changes in the class category list and learn new classes on the fly, and (c) do both 

without sacrificing performance during inference. 

1.4 Aim 

To propose a neural network framework that can: (a) train with a small dataset, (b) 

detect changes in the class category list and learn new classes on the fly, and (c) do so 

without sacrificing performance during inference. 

1.5 Research Objective 

The objective of this project is: 

1. To review and investigate recent approaches in bird sound detection and 

identify their shortcomings.  

2. To find a deep learning approach that can be trained under a relatively small 

dataset, can detect new class categories on the fly and can be inference quickly 

without compromising performance, especially in an environment with low 

computing power. 

3. To design/implement the solution to meet the performance objectives 

4. To benchmark and evaluate the proposed solution by comparing the 

performance to existing work 
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1.6 Scopes of Study 

We will be training our Neural Network using a dataset collected by Puan 

Chong Leong and his team from Universiti Putra Malaysia (UPM). The Dataset 

consists of bird species from Malaysia. Classification of species from other countries 

will not be considered in our project.  

We will only be evaluating our Neural Network performance only after training, 

we will not consider training time as part of performance review. In addition to that, 

we will only be evaluating our using our local CPU, we will not be evaluating the 

framework in a remote environment. 

We will only focus on evaluating and improving the Neural Network 

framework. The pre-processing methodology, which is present in any form of neural 

network architecture, will not be considered when reviewing. We will also be only 

focusing on reviewing one type of Neural network framework rather reviewing 

multiple neural network framework 
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