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ABSTRACT 

Ever since the whole world was being hit by the global pandemic, the lifestyle 

of the people has been drastically impacted. Virtual meetings, seminars and online 

lessons have started to become the new norm since due to the social distancing 

measures being implemented as well as the convenience it brings. The pandemic has 

made people realized that having virtual meetings not only reduces the risk of being 

exposed to an airborne disease, it also saves cost and time. However, the down side to 

virtual meetings is that speakers and audience tends to have lesser dynamics and 

speakers often felt difficult to get a grip of what their audiences’ reaction are, even 

having all their faces displayed on the screen. This is where facial expression 

recognition would come in place. Facial Expression Recognition (or known as FER) 

is a field where algorithms would help automatically recognizes the 

expression/emotions of people based on their facial features. FER using computer 

vision in particular is not a new topic as there has been plenty of studies being 

conducted throughout recent years. However, many has figured that exist challenges 

such as for a computer to accurately recognize a person’s expression through its facial 

features as every person express their emotions on their face differently due to their 

unique biometric features. Therefore, this project introduces a real-time facial 

expression recognition system where it would be able to accurately classify them into 

the 7 basic expressions which includes neutral, happy sad, angry, fear, disgust and 

surprise. It will be done by using the concatenation of facial identity and expression 

recognition pre-trained model. This project was able to improve the overall 

classification accuracy of the automatic recognition of facial expression, using facial 

identity parameters as an additional feature whereby a 7-class classification accuracy 

of 97.10% is being achieved on CK+ dataset while 76.72% is obtained on the 

FER2013. A real-time application of the system is also being demonstrated. 
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ABSTRAK 

Sejak seluruh dunia dilanda pandemik global, gaya hidup rakyat telah terjejas 

secara drastik. Pertemuan maya, seminar dan pelajaran dalam talian mula menjadi 

norma baharu berikutan langkah penjarakan sosial yang dilaksanakan. Pandemik telah 

menyedarkan orang ramai bahawa mengadakan pertemuan maya bukan sahaja 

mengurangkan risiko terdedah kepada penyakit bawaan udara, ia juga menjimatkan 

kos dan masa. Walau bagaimanapun, kelemahan kepada mesyuarat maya ialah penutur 

dan penonton cenderung mempunyai dinamik yang lebih rendah dan penutur sering 

berasa sukar untuk memahami reaksi penonton mereka, walaupun semua wajah 

mereka dipaparkan pada skrin. Di sinilah pengecaman ekspresi muka akan 

dilaksanakan. Pengecaman Ekspresi Muka (atau dikenali sebagai FER) ialah medan di 

mana algoritma akan membantu mengecam secara automatik ekspresi/emosi orang 

berdasarkan ciri muka mereka. FER menggunakan penglihatan komputer khususnya 

bukanlah topik baru kerana terdapat banyak kajian yang dijalankan sepanjang tahun 

kebelakangan ini. Walau bagaimanapun, ramai yang menyedari bahawa wujud 

cabaran seperti pengunaan komputer untuk mengenali ekspresi seseorang dengan tepat 

melalui ciri-ciri wajahnya kerana setiap orang meluahkan emosi mereka pada wajah 

mereka secara berbeza disebabkan ciri biometrik mereka yang unik. Oleh itu, projek 

ini memperkenalkan sistem pengecaman ekspresi muka masa nyata di mana ia akan 

dapat mengklasifikasikannya dengan tepat ke dalam 7 ekspresi asas yang merangkumi 

neutral, gembira sedih, marah, takut, jijik dan terkejut. Ia akan dilakukan dengan 

menggunakan penggabungan identiti muka dan model pra-latihan pengecaman 

ekspresi. Projek ini dapat meningkatkan ketepatan pengelasan keseluruhan bagi 

pengecaman automatik ekspresi muka, menggunakan parameter identiti muka sebagai 

ciri tambahan di mana ketepatan klasifikasi 7 kelas sebanyak 97.10% dicapai pada 

dataset CK+ manakala 76.72% diperoleh pada FER2013 . Aplikasi masa nyata sistem 

juga telah ditunjukkan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

The recent outbreak of the Coronavirus (or also known as COVID-19) has 

caused everyone in the world to be in a devastating state, affecting both the daily life 

and the health of every single person. Covid-19 which comes from the term Severe 

Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) is a type of pneumonia 

disease which is highly contagious and is transmitted through close contact between 

individuals, and because of that, physical classes and meetings have since been 

discouraged as it poses high infection risks to the attendees. Instead, virtual meetings, 

seminars and online lessons are starting to become the new norms as not only does it 

reduces the risk of people getting exposed to air-borne diseases, it also saves cost, as 

it eliminates the need of having a physical venue. On top of that, it also reduces the 

time wasted due to travelling as virtual meetings are as convenient as a click away. 

People have taken a liking towards this new norm of virtual meetings due to the 

countless benefits it brings. In fact, according to a survey conducted by McKinsey [1], 

90% of the organizations are going to adopt some sort of hybrid work model where 

employees would have a combination of remote and on-site work in the post-pandemic 

situation. This indicates that even when the pandemic is over, this new norm of virtual 

meetings would still be relevant moving forward. However, as wonderful as it may 

sound, virtual meetings do have several drawbacks as well despite how much of a 

hassle it would save. Aside from the technical limitations, the most prominent 

disadvantage of virtual meetings is the loss of interpersonal interactions between the 

speakers and the audience [2]. There are actually many different forms of 

communication happening when people meet physically with each other and it is not 

limited to voice. Body language, specifically facial expressions, plays such a vital role 

in conveying a message, as it holds a good amount of information, which is often lost 

when meeting virtually. In fact, according to researches, two third of information are 
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transmitted through non-verbal signals when interacting with someone with 55% of 

the information communicated through facial expression [3] [4]. This nonverbal signal 

when in sync with the words that you’re trying to say, would increase clarity and 

rapport towards the listeners [5]. This is something that is very difficult to be captured 

through online meetings especially when there is more than one person in the room. 

Even with everyone’s video camera turned on, it is still very strenuous for both the 

speaker and the audience to get a grip of how well everyone is taking in the information 

which often leads to a lost in communication. This is where automatic Facial 

Expression Recognition would come in place.  

Facial Expression Recognition (or most commonly known as FER) is a field 

where algorithms would help automatically recognizes the expression or emotions of 

people, based on their facial features. A Facial Expression Recognition task includes 

classifying a human face that are captured digitally in the form of video or image into 

discrete categories such as happiness, sadness, fear, surprise, disgust and anger, which 

are the 6 basic human emotions that are experienced by all races and cultures 

universally, as identified by psychologist Paul Eckman [6]. Not limited to online 

meetings, FER has actually been seen to have the potential to be applied in a wide 

variety of field. This includes Human-Computer Interaction especially with the recent 

spike in the robotics and AI industry, Human Behaviour Interpretation (HCI) such as 

criminal interrogation, and Virtual Reality (VR). FER is definitely not a new field that 

has just recently emerged. In fact, the US transportation Security Administration 

(TSA) has started tests on facial expression screening on surveillance through 

computers since 2003 where the program was supervised by Paul Ekman, renowned 

psychologist who was one of the pioneers in facial expression recognition [7]. Not 

until recently, this has become a hot topic once again with the advancement in 

Artificial Intelligence together with the current pandemic situation that we’re in, which 

leads to a high demand in the industry.  

Artificial Intelligence, specifically machine learnings has gained its popularity 

in recent years especially in the field of computer vision as it has the capability of 

modelling the human learning process where it takes in data, identify the common 

traits of the data from the same category and eventually it would be able to classify 

new data into the groups that it associates with [8]. The automatic identification of the 

important features without human intervention is what makes these algorithms special 



 

3 

and makes it suitable to be applied in computer vision tasks where it leads to a wide 

variety of application, such as plant disease identification [9][10][11] or the detection 

of coronavirus based on X-ray images [12][13][14]. 

Plenty of progress has been made on FER through adopting CNN in recent 

years and it had shown promising results. However, there are still multiple issues that 

are commonly faced across researches due to the complexity and the variations of 

expressions possessed by people. Some of the most common challenges is the way the 

input data is captured. For instance, variation in lighting intensity could affect the 

classification accuracy of the neural network, as with a poor quality of lighting, the 

captured data could contain insufficient information for the computer to process it [3] 

which leads to the need of pre-processing the captured data before feeding the it to the 

neural network. Furthermore, many has figured that it is rather difficult to distinguish 

between certain expression with each other due to their subtle differences, such as fear 

and disgust. Moreover, for a computer to recognize a person’s expression through its 

facial features remain a challenging task as every person express their emotions on 

their face differently due to their unique biometric features.  

Therefore, this project introduces a real-time facial expression recognition 

system where it would be able to accurately classify them into the 7 basic expressions, 

using the concatenation of Facial Identity Recognition (FIR) and Facial Expression 

Recognition (FER) pre-trained model. This would improve the overall classification 

accuracy of the automatic recognition of facial expression, using facial identity 

parameters as an additional feature so that the unique facial biometrics would be 

incorporated. 

1.2 Problem Statement 

With the pandemic situation that world is currently in, virtual meetings and 

conferences have since became the new norm and people have become fond of this 

new norm due to the convenience it brings. However, meeting virtually do not transmit 

the intended information well, compared to meeting physically as according to 

researches, most of the communication happens through nonverbal signals, which 

means that the facial expression plays an important aspect to fully understands what 

the presenter is trying to say and how well the audience is taking in the information 
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[5]. This is something that is very difficult to be captured through virtual calls as there 

are usually a lot of people in the room showing different camera views which 

sometimes could be very distracting especially in a large group. On top of that, many 

tends to be reluctant to turn on their camera due to privacy reasons. Therefore, it leads 

to a demand in having an algorithm to capture the audience’s reaction and display how 

the audience is feeling instead of their actual faces, which would be so much 

convenient.   

Over the years, there had been plenty of studies carried out on FER and there 

are several issues that are commonly seen which one of them is insufficient and 

unbalanced training dataset available. Some expressions such as happy are so much 

easier to obtain from the internet as people tends to upload more happy pictures on 

their social media, but expressions like disgust or sad are rare. Moreover, certain 

expressions are having quite closely related and have subtle differences which makes 

it difficult to distinguish. Another issue is that every person expresses their emotions 

differently due to their different biometric facial features which makes the algorithm 

difficult to generalize the features of a particular expression [15]. All of these 

contributes to the low accuracy obtained for multiclass classifications of facial 

emotions. 

1.3 Hypothesis 

Using a Facial Expression Recognition system that can accurately identify and 

classify people’s emotions based on their facial characteristics can help establish a 

better communication in virtual calls. Transfer learning approach is a feasible option 

when there are limited and unbalanced dataset issue as it can utilize pre-trained weights 

to repurpose an existing CNN model on a new set of training data. Moreover, by using 

a joint learning method of Facial Identity Recognition and Facial Expression 

Recognition models would help in increasing the overall classification accuracy of 

facial emotions. 
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1.4 Research Goal 

This leads us to the objective of this project, which is to develop a real-time Facial 

Emotion Recognition system for virtual meetings using CNN which would help to 

establish a better communication between the presenters and the audience. 

1.4.1 Research Objectives 

1. To evaluate the performance of the model of having identity features 

concatenated with expression features for classifying facial expressions on 2 

types of datasets that are vastly different. 

2. To deploy the model for real-time application that would assist in virtual 

meetings   

1.5 Scope 

This project covers the implementation of a real-time facial emotion recognition 

system by adopting transfer learning method of 2 different CNN models (FER and 

FIR), concatenate the features extracted from both models, and retrain them on a facial 

expression dataset. This project covers identifying the macro-expression of a human 

and does not include the detection of micro-expression where it detects the hidden 

change of human expression that occurs less than half of a second [16]. Moreover, 

unsupervised learning will not be part of the scope, the study mainly focuses on 

supervised learning algorithms, more specifically, convolutional neural networks. This 

work also does not include spatial-temporal learning or training using video sequence, 

but instead, the proposed project is to be trained with static images and implement in 

on a real-time webcam where it would analyse the expressions by frame. 

1.6 Proposal Outline 

The structure of this proposal is organized as follows: Chapter 1 will cover the 

introduction to the problem, a brief background on the main motivation of tackling this 

topic, the problem that has been captured, the hypothesis that has been concluded and 

what’s planned to be achieved in this study. Continuing in Chapter 2, will be discussing 



 

6 

some of the emerging trends pertaining to the Facial Expression Recognition using 

deep learning models, followed by a comprehensive critical review on the popular 

techniques. Following Chapter 3, will be incorporating the detailed methodology for 

this work. Chapter 4 will be covering on the final results that has been obtained 

throughout this project. Eventually, Chapter 5 provides the concluding remarks of the 

whole report along with some recommendations for future work.  
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