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ABSTRACT 

Hexagonal boron nitride (h-BN), also known as Boron Nitride Nanoribbons 

(BNNRs), is an electrical insulator with high thermal stability suitable to make as an 

excellent thermal conductor, including high-temperature equipment. BNNRs is a wide 

bandgap semiconductor within the range of 5eV until 6eV. In this work, two models 

of BNNRs with single vacancy defect used included Armchair BNNRs and Zigzag 

BNNRs to investigate its electronic properties. Nearest-neighbour tight-binding model 

and numerical method are used to simulate the electronic properties of BNNRs with 

single vacancy, including band structure and local density of states. This simulation 

work is done by generating a script using numerical computational methods in 

MATLAB software. The alpha and beta matrix used in the script are modified 

accordingly when the boron or nitrogen atom is missing. Besides, small perturbation 

effect is applied into the model to study the effects of impurities at the edges of 

BNNRs. The simulation result from this work is compared with a pristine BNNRs to 

study the impact of single vacancy of BNNRs to electronic properties of BNNRs. The 

comparison results showed that the band structure and local density of state for both 

ABNNRs and ZBNNRs with single vacancy defect is distorted when compared to 

pristine model. Besides, the effect of edge perturbation is symmetrical when compared 

to previous research.  

  



viii 

ABSTRAK 

Boron nitrida heksagon (h-BN), juga dikenali sebagai reben-nano Boron 

Nitrida (BNNRs) adalah penebat elektrik dengan kestabilan haba yang tinggi, ciri ini 

sesuai untuk dibuat sebagai konduktor termal yang sangat baik, termasuk peralatan 

suhu tinggi. BNNRs ialah semikonduktor dengan jalur yang lebar dalam lingkungan 

julat 5eV hingga 6eV. Dalam karya ini, dua model BNNR dengan kekosongan satu 

atom digunakan termasuk lengan-kerusi BNNRs dan zigzag BNNRs untuk menyiasat 

sifat elektroniknya. Model ikatan ketat terdekat (NNTB) dan kaedah berangka adalah 

digunakan untuk mensimulasikan sifat elektronik BNNRs dengan kekosongan satu 

atom, termasuk struktur pita dan ketumpatan keadaan (DOS). Kerja simulasi ini 

dilakukan dengan menghasilkan skrip menggunakan kaedah pengiraan berangka 

dalam perisian MATLAB. Matriks alfa dan beta yang digunakan dalam skrip diubah 

suai sewajarnya apabila atom boron atau nitrogen hilang. Hasil simulasi daripada kerja 

ini dibandingkan dengan BNNR asli untuk mengkaji kesan kekosongan tunggal 

BNNR kepada sifat elektronik BNNR. Hasil perbandingan menunjukkan bahawa 

sktruktur jalur dan ketumpatan tempatan bagi kedua-dua ABNNR dan ZBNNR dengan 

kekosongan tunggal diherotkan jika dibandingkan dengan model tulen. Selain itu, 

kesan gangguan tepi adalah simetri jika dibandingkan dengan penyelidikan terdahulu. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Boron Nitride (BN) is a typical III-V group compound with a stoichiometry of 

boron and nitrogen being 1:1 [1].  BN is similar to carbon in any lattice structure where 

it consists of zero-dimensional cage, one-dimensional nanotube, two-dimensional 

monolayer and three-dimensional diamond-like crystal structure [1].  A hexagonal 

boron nitride (h-BN) sheet is analogous to graphene since it is isoelectronic and 

isomorphic to the graphene honeycomb lattice [2].  By cutting a straight line, 

hexagonal boron nitride can be constructed into two type of boron nitride nanoribbons 

(BNNRs): armchair boron nitride nanoribbons (ABNNRs) and zigzag boron nitride 

nanoribbons (ZBNNRs) [3].  BNNRs possess higher thermal stability, oxidation 

stability up to eight hundred degree Celsius, chemical inertness [4], and excellent 

optical properties.  In the BN structure, the boron atom and nitrogen atom connected 

with a strong covalent bond.  However, the interlayer between BN layers held together 

with weak Van der Waals force [5].  Lai Kien Wei has done a study on pristine BNNRs 

and introduced edge perturbation to get the electronic properties of BNNRs [6].  Edge 

perturbation is a process to make disturbance on a regular structure to change its 

motion.  Edge perturbation is a method to create an “imperfect structure” on BNNRs 

[7].  Edge perturbation is able to decrease the large energy bandgap of BN and become 

more semiconducting [6]. 

Solutions of Schrödinger’s equation, either by using first-principles, or semi-

empirical methods, are the basis for most quantum transport models, for example, the 

popular Non-Equailibrium Green’s Function (NEGF) formalism and also the Usuki 

method.  Solving Schrödinger’s equation is a complicated task due to it involves the 

solution of the integral for each energy state existing in the whole system.  The 

mathematical analysis of the Schrödinger’s equation is more complicated than 
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involving a small system if it is enlarged.  Longer time and more effort are needed to 

study Schrödinger’s equation, including the theory part and the calculation part.  Many 

researchers are using Schrödinger’s equation to investigate the band structure and 

electronic properties of BNNRs. 

In this research, the pristine BNNRs will be modified to a single vacancy defect 

BNNRs.  One of the nitrogen or boron atom will be removed from BNNRs when 

constructing Hamiltonian equation.  The t term and energy on site of boron and 

nitrogen in alpha and beta will be modified accordingly when boron or nitrogen is 

removed.  The t term will become zero and energy on site of boron and nitrogen will 

changes to an infinite value [8]. 

1.2 Problem Background 

BN is a potential material that can be used in nanotechnology due to its 

uniqueness, including electronic properties.  Schrödinger’s equation in semi-classical 

physics is analogue to Newton’s second law in a physical class.  Schrödinger’s 

equation widely used as the fundamental equation for describing quantum mechanical 

behaviour.  Schrödinger’s equation always deals with the probability of quantum 

mechanics.  Hence it is a linear partial differential equation.  Solving Schrödinger’s 

equation is a complicated task due to it involves the solutions of the integral for each 

energy state existing in the whole system.  The mathematical analysis of the 

Schrödinger’s equation is more complicated than involving a small system if it is 

enlarged.  Longer time and more effort needed to study Schrödinger’s equation, 

including the theory part and the calculation part.  Many researchers are using 

Schrödinger’s equation to investigate the band structure and electronic properties of 

BNNRs. 

This bottom approach of BN allows a more accurate description of carrier 

transport phenomena.  Non-equilibrium Green’s Function (NEGF) approach is used to 

preserve the wave characteristics transport electron.   
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1.3 Problem Statement 

Various h-BN materials have been widely used for many technological fields.  

The defect of BNNRs during fabrication is difficult to avoid and will give impacts to 

the industries.  Atomic-scale defect such as vacancies and dislocations will change the 

chemical properties of BNNRs [9].  Various methods have been developed by 

researcher to fabricate h-BN such as mechanical exfoliation, chemical exfoliation, 

chemical vapor deposition and others [1].  The fabrication process is improving, but it 

still can’t avoid the defect during fabrication process.  Thus, the modelling of BNNRs 

with single vacancy defect is to study the non-idealities effects.  

Previous researchers used other methods to compute the electronic properties 

of BNNRs with single vacancy such as density functional theory (DFT) and first-

principle calculation.  These methods need a large system that is computationally 

difficult and time consumed.  In this research, the nearest-neighbour tight-binding 

(NNTB) model and numerical method are used to compute the band structure, bandgap 

energy and local DOS of BNNRs.  These two methods are used due to they are 

computationally efficient and accessible by applying assumptions on the BNNRs 

model. 

1.4 Research Objectives 

The objectives of the research are: 

(a) To compute and compare the electronic properties such as bandgap energy and 

local density of state of ABNNRs and ZBNNRs with single vacancy and edge 

perturbation 

(b) To develop the numerical nearest-neighbour tight binding Hamiltonian 

operator matrix model of ABNNRs and ZBNNRs with single vacancy for the 

simulation of electronic properties. 
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1.5 Research Scope 

This work focused on the computational modelling of ecteronic properties of 

BNNRs with single vacancy.  The onsite energy of boron atom and nitrogen atom is 

modified to infinite value when the atom is missing.  Besides, the t term that used in 

Hamiltonian equation is changes to zero when there is no connection between the 

atoms.  All simulations of the electronic properties of BNNRs is done using Matrix 

Laboratory (MATLAB) software. 

1.6 Organization of Report 

This report contains four chapters.  Chapter 1 introduces the introduction, 

problem background, problem statement, research objectives and the scope of this 

project.  Chapter 2 will discuss about the literature review based on information 

gathered from studying articles and journals. Chapter 3 covers the research 

methodology of this project where the function of the materials and devices used in 

this project are introduced.  Chapter 4 discusses the preliminary result of ABNNRs 

and ZBNNRs with single vacancy defect.
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