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ABSTRACT 

DC-DC converter has been used in the commercial and industrial sectors to 

step up and down the DC voltage. The increasing development of renewable energy 

technology, battery storage, and DC microgrids has stressed the importance of the 

usage of the DC-DC converter. However, DC-DC converters with constant power load 

(CPL) have experience instability issues such as voltage and frequency fluctuation. 

This negative effect is prominent to such an extent that it will cause negative input 

impedance characteristics that cause destabilize effects in the DC system and sensitive 

electronic components to be damaged. Many techniques are proposed to mitigate the 

issue, such as using passive and active damping, but they are limited to cost and 

physical constraints. Therefore, using an intelligent controller to manage the output of 

the DC-DC converter is a more attractive solution to the issues. The methods have 

been implemented in the controller using proportional integral derivative (PID), model 

predictive control (MPC), machine learning, and deep learning. As the system 

becomes more complex, methods that used PID and MPC controller have become 

infeasible to be implemented. Therefore, using machine learning and deep learning is 

an attractive alternative to solve the control issue. Reinforcement learning (RL) and 

deep reinforcement learning (DRL) have been used to solve complex control problems 

such as Proximal Policy Optimization (PPO). This project's purpose is to improve the 

DRL performance via improving reward function and compare both PPO and AC DRL 

controllers to analyse the performance during induced CPL by using MATLAB for the 

simulation. The project has shown that by improving the PPO DRL based long short-

term memory (LSTM) network for actor and critic agents with an improved reward 

system will provide overall all improved performance when compared to the 

benchmark PID controller. By setting an environment in which the DRL controller is 

able to train properly, the performance of the buck-boost converter controller by AC 

and PPO DRL algorithm is compared. PPO DRL showing greater performance in 

converging to the reference point and a faster training period. Moreover, PPO DRL 

can demonstrate more robustness and improved voltage stability and settling time of 

the buck-boost converter without the need to further tune its training parameters.  
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ABSTRAK 

Penukar AT-AT telah digunakan dalam sektor komersial dan perindustrian 

untuk menaikkan dan menurunkan kadar voltan AT. Perkembangan teknologi dalam 

bidang tenaga boleh diperbaharui, storan bateri dan mikro grid AT telah memberi 

fokus terhadap kepentingan penggunaan komponen penukar AT-AT. Walau 

bagaimanapun, penukar AT-AT dengan nilai Beban Berkuasa Malar (CPL) akan 

mengalami masalah ketidakstabilan terhadap nilai voltan dan frekuensi yang sentiasa 

berubah-ubah. Kesan negatif ini amat ketara sehingga ianya akan menghasilkan ciri 

galangan masukan negatif yang boleh menyebabkan kesan ketidakstabilan dalam 

sistem AT dan mengakibatkan komponen elektronik yang sensitif akan menjadi rosak. 

Pelbagai teknik telah dicadangkan bagi mengurangkan masalah yang berkait dengan 

isu ini seperti menggunakan kaedah penapis pasif dan aktif, tetapi ianya mempunyai 

nilai kos yang terhad dan kekangan terhadap bentuk fizikal. Oleh yang demikian, salah 

satu cara penyelesaian yang lebih sesuai terhadap isu dan masalah ini adalah dengan 

menggunakan peralatan pengawal pintar untuk mengawal nilai output bagi penukar 

AT-AT ini. Kaedah pengawalan yang telah digunakan adalah dengan melalui cara 

Berkadar-Kamiran-Terbitan (PID), Model Kawalan Ramalan (MPC), Pembelajaran 

Mesin dan Pembelajaran Mendalam. Apabila sistem menjadi lebih kompleks, cara 

yang menggunakan pengawal PID dan MPC akan menjadi lebih sukar untuk 

dijalankan. Oleh itu, kaedah menggunakan Pembelajaran Mesin dan Pembelajaran 

Mendalam ini telah menjadi salah satu kaedah alternatif yang menarik dalam 

menyelesaikan masalah isu pengawalan tersebut. Reinforcement Learning (RL) dan 

Deep Reinforcement Learning (DRL) telah digunakan bagi menyelesaikan masalah 

pengawalan yang kompleks seperti penggunaan kaedah Proximal Policy Optimization 

(PPO). Tujuan projek ini adalah untuk meningkatkan prestasi DRL melalui 

penambahbaikan fungsi dan membandingkan antara kedua jenis pengawal PPO dan 

AC DRL dalam menganalisis prestasi dengan memasukkan CPL dalam perisian 

MATLAB bagi tujuan simulasi. Projek ini telah membuktikan bahawa dengan 

penambahbaikan terhadap PPO DRL berasaskan panjang rangkaian ingatan jangka 

pendek atau dikenali sebagai Long Short-Term Memory (LSTM) akan memberikan 

peningkatan prestasi keseluruhan apabila dibandingkan dengan kawalan PID. Dengan 

penetapan yang sesuai terhadap pengawalan DRL, pembandingan bagi tahap prestasi 

pengawal penukar AT-AT di antara algoritma AC dan PPO DRL telah dilakukan. PPO 

DRL telah menunjukkan prestasi yang lebih baik berbanding nilai  rujukan dan 

mempunyai tempoh yang lebih pantas. Tambahan lagi, PPO DRL adalah lebih kukuh 

dan stabil serta telah meningkatkan tahap kestabilan voltan dan tempoh penyelesaian 

masa bagi penukar AT-AT tanpa perlu membuat sebarang penetapan tambahan bagi 

parameter latihannya.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

 Direct Current (DC) power systems have some advantages over Alternating 

Current (AC) power systems in terms of stability and being applied in DC microgrid 

and renewable generation system [1]–[4]. In microgrid and renewable generation 

system, the control schemes have to be able to extract the maximum potential by 

adjusting the load and regulation of controller to maintain the voltage of the source 

[3], [5], [6]. The interest to optimize the DC-DC converter have been studied 

extensively in order to produce a good quality output signal. The DC-DC converter is 

able to regulate the DC voltage from source and output the DC voltage with its desired 

setting. A buck converter reduces voltage from the source to the load, whereas a boost 

converter increases voltage from the source to the load. Furthermore, the output 

voltage of a buck-boost converter is either less than or more than the source voltage in 

magnitude.  

The destabilizing effects on the circuit limit the potential of DC-DC converters, 

resulting in severe voltage and frequency oscillations [3], [7], [8]. The issue presented 

in DC-DC converter with constant power load (CPL) will cause the loss of power, 

damages to the sensitive component of the system and may cause the occurrence of 

fault. Therefore, optimising the control system of DC-DC converter for DC microgrid 

and renewable sources of energy for the production of electrical energy will bring 

benefit to the industry [5], [9]. To solve this issue, a model-based and model-

independent strategies control scheme is presented for DC-DC converter. However, 

model-based is limited in effectively handling any uncertainties and complex structure. 

Therefore, the current trend is more toward model-independent strategies control 

scheme as they are able to adapt to various complex system [8]. 
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1.2 Problem Statement 

The application of using buck-boost converters is attractive as it is simple and 

able to increase or decrease the output voltage depending on the reference voltage. It 

is instrumental in applications such as battery-powered systems, renewable energy 

plants, or DC power systems. Still, it has a limitation that causes severe voltage and 

frequency oscillation when the circuit's constant power load (CPL) is applied. This 

will cause voltage swell or drop that will affect the power system. Therefore, a 

feedback control system is needed to manage the buck-boost converter to reduce the 

voltage in stability and settling time. The standard control techniques include 

proportional-integral (PI) control, proportional-integral-derivative (PID) control, and 

model predictive control (MPC) for the buck-boost converters. A sophisticated control 

technique that uses machine learning or deep learning techniques has provided more 

opportunities to improve the converter's performance by utilizing reinforcement 

learning (RL) and deep reinforcement learning (DRL) as the preferred controller. The 

previous study shows that the voltage stability and settling time of buck-boost 

converter is improved using DRL with Proximal Policy Optimization (PPO) while 

comparing benchmark PI controller. However, the study can further expand. 

1.3 Research Objectives 

The main aim of this work is to develop and validate the deep reinforcement 

learning algorithm in buck-boost converter controller to reduce the voltage instability 

and improve settling time. The objectives of the research are: 

(a) To develop the DRL controller to further improve voltage instability and 

settling time while reaching the desired voltage through simulation by using 

MATLAB. 

(b) To investigate the performance of the buck-boost controller by AC and PPO 

algorithm based DRL algorithm. 

(c) To compare different reward design of DRL algorithm. 



 

3 

1.4 Scope of research 

The scopes of this research are as follows: 

(a) The DRL algorithms that will focus on this research are PPO and AC only.  

(b) The benchmark to test the performance will be based on a PID controller that 

is tuned using the MATLAB/Simulink solver. 

(c) The simulation only focuses on the ideal Buck-Boost converter only and 

voltage output of 30 V and 80 V only and input voltage of 48 V. Non-ideal 

component is neglected during the simulation of the circuit. 

1.5 Outline of the Thesis 

The thesis is structured into five chapters. Chapter 1 will consist of the background 

of the study, problem statement, research objective, and scope of research. In chapter 2, 

the literature reviews related to the buck-boost converter, PID and DRL are explained. In 

chapter 3, the designed implementation of the research project is described. In chapter 4, 

the results and discussion of performance comparison between DRL reward design and 

buck-boost controller with PID, AC DRL, and PPO DRL controller are presented. Finally, 

in chapter 5, the conclusion of the study is presented with recommendations for future 

works for the improvement of the development of DRL. 
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