
 

 

HASH FUNCTION OF CRYPTOGRAPHICALLY SECURE PSEUDORANDOM 

NUMBER GENERATOR FOR HARDWARE ROOT-OF-TRUST 

 

 

 

 

 

 

 

ELAINE ONG EI LING 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the  

requirements for the award of the degree of 

Master of Engineering (Computer and Microelectronic Systems) 

 

 

School of Electrical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

JULY 2021 



iv 

DEDICATION 

This project report is specially dedicated to my mother, who taught me that 

the best kind of knowledge to have is that which is learned for its own sake. She also 

always been my source of strength and inspiration when I’m facing hard time. She 

also like a father for me, the one who taught me that even the largest task can be 

accomplished if it is done one step at a time. It is such a blessing for you to be in my 

life.  



v 

ACKNOWLEDGEMENT 

My deepest appreciation to all that involving and provide me the strength and 

possibility to complete this final year project successfully.  I wish to express my 

sincere appreciation to my project supervisor, PM. Ir. Dr. Muhammad Nadzir Bin 

Marsono, for encouragement, guidance, critics, motivation, and friendship. He will 

always there to provide help whenever you need it. His constructive comments and 

thoughtful ideas had contributed a lot of positive outcomes to this project. Without his 

continued support and interest, this thesis would not have been the same as presented 

here. 

A special gratitude to my beloved parents and family who had always 

supported and encouraged me throughout the though journey in Universiti Teknologi 

Malaysia (UTM). Their greatest love and motivation have brought me the strength to 

complete this master program, Not forgotten my beloved fellow friends for their 

supports. My sincere appreciation also extends to all my colleagues and others who 

have provide assistance at various occasions. Their views and tips are useful indeed. 

Unfortunately, it is not possible to list all of them in this limited space. Thankful and 

grateful to have all of you in my life.  



vi 

ABSTRACT 

The hardware secure module is the common example of Root-of-Trust that 

used in cryptographic system, fundamentally it is generating, managing and provide 

protection to the cryptographic keys and performing cryptographic functions within its 

secure environments. A random number generator (RNG) is one of the critical 

components in hardware Root-off-Trust, since one of the most important elements in 

securing cryptographic system is the keys generation. A cryptographically secure 

pseudorandom number generator (CSPRNG) is a pseudorandom number generator 

with properties that suitable to be used in cryptography systems for the keys 

generation. There are few CSPRNG standardized under NIST SP 800-90A Rev.1 

which is Hash_DRBG, HMAC_DRBG and CTR_DRBG. Both Hash_DRBG and 

HMAC_DRBG is hash based DRBG. This project is performing the study of 

Hash_DRBG algorithm and understand that the core of the DRBG is the hash function. 

All the internal process of Hash_DRBG is using hash function such as the instantiate 

process, reseeding process, and pseudorandom numbers generation process. 

Therefore, the selection of hash function to be used in the Hash_DRBG is important. 

There are few SHA family available such as SHA0, SHA1 and SHA2. Based on 

previous work, SHA0 and SHA1 family algorithm can be break by the generic attacks 

such as Brute Force attack, domain extender attack, poisoned block attach, etc. 

Therefore, SHA2 family is preferable in this project, under this family, SHA-256 is 

used. This is because SHA-256 can provide better robustness compare to SHA-512. In 

the framework of multiple cryptographic cores, two SHA-256 can perform better in 

term of higher throughput and lower internal state compare to SHA-512. This project 

will be focusing on SHA-256 algorithm and applied pipeline architecture on the 

algorithm to help on decreasing the critical path for better performance. 



 

vii 

ABSTRAK 

Modul keselamatan perkakasan adalah contoh biasa “Root-of-Trust” yang 

digunakan dalam sistem kriptografi, ia berfungsi untuk menghasilkan, mengurus dan 

memberikan perlindungan kepada kunci kriptografi dan melakukan fungsi kriptografi 

dalam persekitarannya. Penjana nombor rawak (RNG) adalah salah satu komponen 

penting dalam perkakasan “Root-of-Trust”, kerana salah satu elemen terpenting dalam 

memastikan keselamatan sistem kriptografi adalah penjanaan kunci. Penjana nombor 

pseudorandom kriptografi yang selamat (CSPRNG) adalah penjana nombor 

pseudorandom dengan sifat yang sesuai untuk digunakan dalam sistem kriptografi 

dalam penjanaan kunci. Terdapat beberapa CSPRNG yang diseragamkan di bawah 

NIST SP 800-90A Rev.1 iaitu Hash_DRBG, HMAC_DRBG dan CTR_DRBG. 

Hash_DRBG dan HMAC_DRBG adalah DRBG berasaskan hash. Projek ini  memberi 

perhatian dalam kajian algoritma Hash_DRBG dan memahami bahawa teras DRBG 

adalah fungsi hash. Semua proses dalaman Hash_DRBG seperti proses instantiate, 

proses reseeding, dan proses penjanaan nombor pseudorandom menggunakan fungsi 

hash. Oleh itu, pemilihan fungsi hash yang perlu digunakan dalam Hash_DRBG 

adalah penting. Terdapat beberapa keluarga SHA yang tersedia seperti SHA0, SHA1 

dan SHA2. Berdasarkan ujikaji sebelumnya, algoritma keluarga SHA0 dan SHA1 

berjaya diserang oleh serangan generik seperti serangan “Brute Force”, serangan 

pemanjang domain, penyekat blok beracun, dll. Oleh itu, SHA-256 yg dibawah 

keluarga SHA2 menjadi pilihan dalam projek ini. Ini kerana SHA-256 dapat 

memberikan kekuatan yang lebih baik berbanding dengan SHA-512. Dalam kerangka 

pelbagai teras kriptografi, dua SHA-256 dapat menunjukkan prestasi yang lebih baik 

dari segi “throughput” yang lebih tinggi dan keadaan dalaman yang lebih rendah 

berbanding dengan SHA-512. Projek ini akan menumpukan pada algoritma SHA-256 

dan seni bina saluran paip yang diterapkan pada algoritma untuk membantu 

mengurangkan jalan kritikal untuk prestasi yang lebih baik. 

 

  



 

viii 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF ABBREVIATIONS xii 

CHAPTER 1 INTRODUCTION 1 

1.1 Research Background 1 

1.2 Problem Statement 2 

1.3 Research Aim and Objectives 3 

1.4 Report Outline 3 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 SoC Protection 5 

2.2 Random Number in Cryptographic 6 

2.2.1 True Random Number Generator (TRNG) 8 

2.2.2 Pseudo-random Number Generator (PRNG) 9 

2.3 Hardware PRNG for Cryptographic System 14 

2.4 Summary 20 

CHAPTER 3 RESEARCH METHODOLOGY 21 

3.1 Methodology 21 

3.1.1 SHA-256 Algorithm 26 

3.1.2 SHA-256 with Pipelined Design 31 



ix 

3.2 Summary 34 

CHAPTER 4 RESULT AND DISCUSSION 35 

4.1 SHA-256 Hash Function 35 

4.2 SHA-256 Hash Function with Pipeline Design 37 

4.3 Comparison with previous work 39 

CHAPTER 5 CONCLUSION 41 

REFERENCES 43 

Appendices A - B 46 - 50



 

x 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 1 The main differences of TRNG and PRNG. 7 

Table 2 Different period by various polynomials in 16-bit LFSR 

[10] 13 

Table 3 Experiment Result for CSPRNG IP-Core Based on SHA2 

Algorithm [18] 15 

Table 4 Percentages of bit sequences passing the NIST tests for 

cryptographically secure multi-stage pseudorandom 

number generator 18 

Table 5 Instantiate process of Hash_DRBG [16] 22 

Table 6 Hash_df function of Hash_DRBG [16] 22 

Table 7 Reseed process of Hash_DRBG [16] 23 

Table 8 Generate process of Hash_DRBG [16] 23 

Table 9 Hashgen function process of Hash_DRBG [16] 24 

Table 10 Symbols and Operations Representation 27 

Table 11 Message, padding and expected digest value for SHA-256 36 

Table 12 Performance Comparison of SHA-256 39 

 

  



 

xi 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 1 The basic requirements of a hardware secure module 

(HSM) [1] 6 

Figure 2 The generic architecture of a TRNG [3] 9 

Figure 3 Overall function diagram of proposed architecture in [7] 11 

Figure 4 Operations flow for stage 2 cryptographically secure multi-

stage pseudorandom number generator [20] 16 

Figure 5 Computation of step 4 for cryptographically secure multi-

stage pseudorandom number generator [20] 17 

Figure 6 The failure rate of different tests along the number of 

iterations [20] 19 

Figure 7 Block diagram of Hash_DRBG [16] 25 

Figure 8 Message pre-processing for SHA-256 26 

Figure 9 SHA-256 hash function algorithm 30 

Figure 10 FBD of Compressor 32 

Figure 11 FBD of Compressor with Pipelined Design 33 

Figure 12 Simulation waveform of SHA-256 36 

Figure 13 Resource Utilization for SHA-256 37 

Figure 14 Timing Analysis Summary for SHA-256 37 

Figure 15 Simulation Waveform for SHA-256 with Pipelined Design 38 

Figure 16 Resource Utilization for SHA-256 with Pipelined Design 39 

 

  



 

xii 

LIST OF ABBREVIATIONS 

BRAM -  Block Random Access Memory 

CPU - Central Processing Unit 

CSPRNG - Cryptographic Secure Pseudo-Random Number Generator 

EN - Extract Number 

FPGA - Field Programmable Gate Array 

GN - Generate Number 

HDL  - Hardware Description Language 

HSM - Hardware Secure Module 

IC - Integrated Circuit 

IG - Initialize Generator 

LFSR - Linear Feedback Shift Register 

LSB - Least Significant Bit 

MMTG - Modified Mersenne Twister based on Chaotic Logistic 

Mapping 

MSB -  Most Significant Bit 

MT -  Mersenne Twister 

MUX - Multiplexer 

PM - Polynomial Modulator 

PRNG - Pseudo-random Number Generator 

RAM - Random Access Memory 

RNG - Random Number Generator 

ROM - Read-only-Memory 

RoT - Root-of-Trust 

RTL - Register Transfer Level 

SoC - System-on-Chip 

TGFSR - Twisted Generalized Feedback Shift Register 

TPM - Trusted Platform Module 

TRNG - True Random Number Generator 



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

In nowadays digital world, information security is getting crucial in the modern 

communications and computing system. From communication perspective, the 

security is mainly on protecting user sensitive or personal information, even in 

mandates the confidentially and integrity of communicated data, validating the 

communicating peers, identify and protecting the communications entities and 

especially in the protection of applications from malicious software. If looking from 

industrial sector, security is mainly needed to guarantee the machines is functioning 

properly and maintain it. This is to ensure it works safely and maintain profitability.  

The hardware Root-of-Trust (RoT) is basically created or implemented as the 

foundation of trust that extent from System-on-Chip (SoC) to the operating system, 

applications and even to the external communications [1]. SoC is an integrated circuit 

(IC) that integrate the entire functional electronic or computer system onto it. As what 

it means by its name, the entire system is on a single chip, where it includes the central 

processing unit, internal memory, registers as well as input and output ports. Mainly 

hardware RoT is built by four basic element such as central processing unit (CPU), 

identification, key management, and encryption. How to have a good key 

management? This will directly depend on the random number generation. Especially 

in a cryptographic system, RoT always a trusted source because the cryptographic 

security is directly depending on the strengths of the secret keys that use for the data 

encryption and decryption and in performing the specific functions.  

Therefore, random number generators (RNGs) are critical for the 

cryptographic application that need ultimate security since RNG is use as the key 

generation and the authentication protocols. The random numbers need to be non-



 

2 

reproducible, unpredictable, and having good statistical properties. Random number 

generator can be classified in two category there is a true random number generator 

(TRNG) and pseudo-random number generator (PRNG). TRNG is non-deterministic 

and claimed to have truly random as the randomness sources are implemented on 

hardware and this physical process is unpredictable. PRNG is different with TRNG, it 

will rely on the initial input value “seed” to produce deterministic, periodic sequence 

of numbers. This generator is claimed to be not provably random since the output can 

be predict when the “seed” is known [2], [3], [4].  

1.2 Problem Statement 

The PRNG that suitable for cryptographic systems is known as 

cryptographically secure pseudo-random number generators. The requirements for 

standard PRNG is also satisfied for cryptographic used PRNG, but the reverse is not 

true. For a PRNG to be the cryptographically secure pseudo-random number generator, 

there are two major requirements need to fulfill. First, it needs to satisfy the next-bit 

test. The person should not be able to predict the bit k+1 even though he knows all the 

k bits from the initial state value of the PRNG. Secondly is that it requires to withstand 

the state compromise extensions.  Let’s say if parts or all its state is known or somehow 

revealed by the attackers, it should be impossible for the attacker to reconstruct all 

previous random numbers prior to the evaluation [5].  

From the literature review of previous work on cryptographic PRNG, the 

commonly used PRNG is the Mersenne Twister and the linear feedback shift register 

(LFSR) method. Mersenne Twister is been used in various simulation since it is 

popular for its long period, high performance, high equidistribution, highly random 

sequence and rapid number generation [6], [7], [8], [9]. Still, it has poor diffusion issue. 

Another frequently used PRNG is LFSR method, it is claimed to be fast and minimal 

computation. Besides, it is easy to be implement in either software or hardware [10]. 

But when it comes to cryptographic standpoint, LFSR is not consider as a 

cryptographic secure as the Berlekamp-Massey algorithm able to observed the 2n 

consecutive bits of the n-bit LFSR structure [11].  



 

3 

There are few standard CSPRNG algorithms that declare by NIST SP 800-90A 

Rev.1 which is the Hash_DRBG, HMAC_DRBG and CTR_DRBG. Both 

Hash_DRBG and HMAC_DRBG is uncontrovertible and proven, and both using hash 

function for the instantiate and reseeding. By having a high performance of hash 

function, the performance of the DRBG will be increases as well.  

1.3 Research Aim and Objectives 

This research is targeting to implement a hash function that supporting on the 

implementation of standard CSPRNG that can be used in cryptographic hardware RoT. 

The objectives of the research are as below: 

To implement and design a hash function algorithm which targeting in encryption 

usage for cryptography at register transfer level (RTL) by using Verilog. 

To validate and analyse the performance of the hash function that used in CSPRNG 

for SoC Root-of-Trust. 

 

1.4 Report Outline 

This research report consists of 5 chapters. The literature review of previous 

work is discussed in Chapter 2. The important elements in SoC hardware Root-of-

Trust is discussed. The overview of random number generator is discussed and analyse 

which is the suitable random number generator to be used in cryptographic system.  

In Chapter 3, the research methodology throughout this project is discussed. 

The architecture of the hash function that used with the CSPRNG under NIST SP 800-

90A Rev. 1 standard will be discussed. The proposed design on the hash function will 

be explain in detail in this chapter.  



 

4 

Chapter 4 is about the result and discussion of the proposed design. This 

chapter will mainly be discussing the result obtained from the synthesis and simulation 

of the proposed design.  

Lastly, the conclusion and future work discussion will be cover in Chapter 5.  

What does the gain from Chapter 4 and what can be done to improve the problems will 

be discussing here. 



43 

REFERENCES 

[1] T. Root, “Using hardware secure modules to protect SoCs,” 2018.

[2] A. Yadav, “VCU Scholars Compass Design and Analysis of Digital True

Random Number Generator Design and Analysis of Digital True Random

Number Generator,” 2013.

[3] B. Yang, “True Random Number Generators for FPGAs,” no. September,

2018.

[4] M. Stipˇ, Open Problems in Mathematics and Computational Science, no.

November 2014. 2014.

[5] S. Random and N. Generators, “Secure Random Generators.”

[6] A. Jagannatam, “Mersenne Twister – A Pseudo Random Number Generator

and its Variants,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30,

2008, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.9735&amp;rep

=rep1&amp;type=pdf.

[7] S. Chandrasekaran and A. Amira, “High performance FPGA implementation

of the Mersenne Twister,” Proc. - 4th IEEE Int. Symp. Electron. Des. Test

Appl. DELTA 2008, pp. 482–485, 2008, doi: 10.1109/DELTA.2008.113.

[8] Y. Li, J. Jiang, H. Cheng, M. Zhang, and S. Wei, “An efficient hardware

random number generator based on the MT method,” Proc. - 2012 IEEE 12th

Int. Conf. Comput. Inf. Technol. CIT 2012, pp. 1011–1015, 2012, doi:

10.1109/CIT.2012.208.

[9] L. Zhang, X. Zou, and B. Chen, “Modified mersenne twister based on chaotic

logistic mapping strategy,” Proc. - 2019 6th Int. Conf. Inf. Sci. Control Eng.

ICISCE 2019, pp. 783–788, 2019, doi: 10.1109/ICISCE48695.2019.00160.

[10] M. Han and Y. Kim, “Unpredictable 16 bits LFSR-based true random number

generator,” Proc. - Int. SoC Des. Conf. 2017, ISOCC 2017, no. x, pp. 284–

285, 2018, doi: 10.1109/ISOCC.2017.8368897.

[11] E. Dubrova, “A transformation from the fibonacci to the galois NLFSRs,”

IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 5263–5271, 2009, doi:

10.1109/TIT.2009.2030467.



 

44 

[12] “Security Subsystems for Systems-on- Chip ( SoCs ) Common concepts and 

usage paradigms of security subsystems.” 

[13] P. Maene, “Lightweight Roots of Trust for Modern Systems-on-Chip,” no. 

October, 2019. 

[14] D. DiCarlo, “Random Number Generation: Types and Techniques,” Sr. 

Honor. Theses, 2012, [Online]. Available: 

https://digitalcommons.liberty.edu/honors/308. 

[15] V. Van Der Leest, E. Van Der Sluis, G. J. Schrijen, P. Tuyls, and H. 

Handschuh, “Efficient implementation of true random number generator based 

on SRAM PUFs,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes 

Artif. Intell. Lect. Notes Bioinformatics), vol. 6805 LNCS, pp. 300–318, 2012, 

doi: 10.1007/978-3-642-28368-0_20. 

[16] E. Barker and J. Kelsey, “NIST SP 800-90A Revision 1 Recommendation for 

random number generation using deterministic random bit generators 

(revised),” NIST Spec. Publ., no. Giugno, 2015. 

[17] C. Jeong, “Cryptography Engine Design for IEEE 1609.2 WAVE Secure 

Vehicle Communication using FPGA,” 2014, [Online]. Available: 

http://scholarworks.unist.ac.kr/bitstream/201301/10491/1/Cryptography 

Engine Design for IEEE 1609.2 WAVE Secure Vehicle Communication using 

FPGA.pdf. 

[18] L. Baldanzi et al., “Cryptographically secure pseudo-random number 

generator IP-core based on SHA2 algorithm,” Sensors (Switzerland), vol. 20, 

no. 7, 2020, doi: 10.3390/s20071869. 

[19] W. Penard and T. Van Werkhoven, “Chapter 1 On the Secure Hash Algorithm 

family,” pp. 1–17. 

[20] A. A. Maaita, H. A. A. Al Sewadi, A. K. Husain, and O. A. Hassan, “A 

Cryptographically Secure Multi-stage Pseudo-random Number Generator,” 

no. May 2015, 2017, doi: 10.17148/IJARCCE.2015.4503. 

[21] H. Mestiri, “Efficient FPGA Hardware Implementation of Secure Hash 

Function SHA-2,” no. December 2014, pp. 9–15, 2015, doi: 

10.5815/ijcnis.2015.01.02. 

[22] S. Suhaili, “Design of High-Throughput SHA-256 Hash Function based on 

FPGA,” 2017. 

[23] M. Padhi, “An Optimized Pipelined Architecture of SHA-256 Hash Function,” 



45 

pp. 17–20, 2017. 

[24] M. Clayton, M. Clayton, and K. Brown, “Federal Register/ Vol.67, No. 165/

Monday, August 26, 2002/ Notices,” vol. 67, no. 165, pp. 3–4, 2002.

[25] A. Publication, “Secure Hash Standard (SHS),” vol. 4, 2015.

[26] Xilinx, “ZCU106 Evaluation Board,” Xilinx.com, vol. UG1224, no. v1.4, pp.

1–134, 2019.

[27] F. Publication, “Archived Publication,” vol. 2, 2004, [Online]. Available:

http://csrc.nist.gov/publications/PubsFIPS.html#fips180-4.




