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Abstract—In real-world applications, images taken from 

different cameras usually have different resolution, 

illumination, poses, and background views. This problem 

leads to the need of domain adaptation in which case, 

training and testing are not drawn from the same 

distribution. There have been many studies carried out on 

domain adaptation, and among the state-of-the-art methods 

is the Joint Geometrical and Statistical Alignment (JGSA) 

approach. This paper presents an improvement for 

unsupervised domain adaptation in transfer learning using 

a Balanced Weight JGSA (BW-JGSA). The existing method 

of JGSA seeking the way to minimize the distribution 

divergence between marginal and conditional distribution 

across domains; however, treat them equally in terms of 

distribution weight. This drawback affects the existing 

method mainly when applied to real applications. The 

contribution of this paper is to use balanced distribution 

adaptation in JGSA that can adaptively leverage the 

importance of marginal and conditional distribution in 

JGSA. In this method, the balance weight factor, 𝜇, will be 

applied to marginal and conditional distributions distance 

for each different subspace in JGSA. Comparing the 

proposed method with state-of-the-art techniques in object 

and digital datasets shows significant improvement of our 

work.   

 

Index Terms—domain adaptation, transfer learning, the 

balanced weight, joint geometrical, and statistical alignment 

 

I. INTRODUCTION 

The development of computer vision and online media 

applications has attracted many researchers to focus on 

automatic recognition and analysis of multimedia data 

due to the success of machine learning techniques to 

recognize objects or scenes automatically without human 

assistance. The standard machine learning paradigm is 

that training and testing data are drawn from the same 

distribution [1], [2]. However, this assumption does not 

apply in many applications, especially in the real-world. 

For instance, in object recognition, the change of 

background, pixel, angle, and illumination will cause 

different distribution data between the training and testing 

phases. This discrepancy will generate a distribution shift, 

which will affect the accuracy performance because 
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standard classifiers cannot cope with data distribution 

mismatch. One of the areas that mainly focuses on data 

distribution mismatch is transfer learning. However, 

another problem is that labeled data is expensive, and it is 

unrealistic to relabel a large amount of data in the target 

domain.  Hence, unsupervised domain adaptation, one of 

the subcategories of transfer learning, is an excellent 

strategy to leverage the labeled source domain data to 

boost the new target domain task. 

We are focusing on feature transformation in 

unsupervised learning that transforms the features into 

joint or unified subspace. Based on the study, there are 

two ways of feature transformation: data-centric and 

subspace-centric. The data-centric methods project 

feature data into a common feature subspace by reducing 

distribution divergence between the domains. The 

subspace-centric techniques are based on subspace 

projection of source and target domain into joint feature 

subspace. In data-centric methods, two factors influence 

the better performance; the first is by adapting the 

marginal and conditional distribution in joint subspace, 

and the second is leveraging the first concept into two 

split subspaces by considering the existence of no unified 

subspace if the dataset has a large discrepancy [3]. 

Nevertheless, one important factor is to deal with the 

imbalanced class that often exists in any transfer learning 

scenarios. The class imbalance depends on the dataset 

condition; when the dataset is more similar, the 

conditional distribution is more dominant, and when the 

dataset is less similar, the marginal distribution is more 

dominant [4]. Interestingly, the class imbalance problem 

in unsupervised domain adaptation has been highlighted 

by [4] through Balanced Distribution Adaptation (BDA).  

The authors apply manual weight to the marginal and 

conditional distribution and select the best weight that 

provides the best accuracy performance. Despite the 

success, BDA only considers balancing the weight of 

marginal and conditional distribution in joint subspace 

that probably gets distorted when there is no unified 

subspace; a situation when the dataset has a large 

discrepancy. Furthermore, BDA only focuses on single-

centric, one of the data-centric methods, without 

considering merging with the subspace-centric technique 

to get better performance. 
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JGSA in [5] shows that treating the distribution with 

two disjoint subspaces gives a better result and was apply 

in many works such as [6]-[8], and this has inspired us to 

propose the Balanced Weight Joint Geometrical and 

Statistical Alignment (BW-JGSA). This improvement 

also applies to the Subspace Alignment (SA), one of the 

subspace-centric methods. The contributions of this work 

are two-fold; improving the performance of BDA when 

dealing with a dataset that has a large discrepancy and 

boosting the accuracy performance. 

Specifically, the idea is to extend the nonparametric 

Maximum Mean Discrepancy (MMD) to measure the 

difference in marginal and conditional distributions and 

integrate with the balanced weight factor, 𝜇.  Because we 

consider no unified subspace, the implementation will be 

different compared to [4], [9] which only produces a 

single embedded matrix. Instead, there will be two 

disjointed embedded matrices towards the end. Our 

improvement will also integrate the subspace alignment 

to include the subspace-centric to increase the accuracy 

performance. Based on Fig. 1, we can observe that both 

domains are projected onto a new feature subspace. This 

feature subspace is invariant. However, there are risks 

that the distribution data may not be preserved, different 

subspace may occur and possibility of class biased due to 

the geometrical projection. JGSA is known to solve the 

distribution data and subspace different problem. Our 

contribution is in handling the class biases by reweighting 

the data between source domain projection and target 

domain projection dynamically. 

 

Figure 1. Results of minimizing MMD in BW-JGSA. The class weight 

biases are handled accordingly, statistical data are preserved and 
subspace difference are reduced. 

The remaining paper is organized as follows: Section 

II summarizes the existing techniques in unsupervised 

domain adaptation. Section III details out improved 

balanced distribution adaptation. Section IV presents the 

experiment setup, results, and discussion. Finally, the 

conclusion is discussed in Section V. 

II. RELATED WORK 

This section discusses prior works on unsupervised 

domain adaptation related to our work and highlights 

their differences. We discuss the unsupervised domain 

adaptation in two groups. 

The Data-centric group seeks a unified transformation 

that projects the source and target domains into a new 

subspace to reduce the discrepancy between the domains 

and preserve data properties in the original space. Pan et 

al. [10] proposed the Transfer Component Analysis (TCA) 

that tries to learn some transfer components across 

domains that minimize the MMD of the new 

representations of the two domains by using the 

Reproducing Kernel Hilbert Space (RKHS). Long et al. 

[9] proposed Joint Distribution Adaptation (JDA) that 

matches marginal and conditional distribution 

discrepancies between domains. Transfer Joint Matching 

(TJM) [11] adds instance reweighting into the joint 

features in TCA.  Ghifary et al. [12] proposed the Scatter 

Component Analysis (SCA) that converts feature vectors 

in the source and target domains into scatter space in the 

RKHS. Wang et al. [4] proposed Balanced Distribution 

Adaptation (BDA) that leverages the balance weight in 

the marginal distribution discrepancy and the conditional 

distribution discrepancy in JDA. 

The Subspace-Centric group aims to manipulate the 

domain subspaces in reducing the domain shift without 

exploiting both the distribution data in the source and 

target domains. Fernando et al. [13] proposed a Subspace 

Alignment (SA) by aligning the source and target 

subspaces using a transformation matrix. Gong et al. [14] 

used a manifold property to find a path of the subspace by 

proposing a Geodesic Flow Kernel (GFK). GFK is 

performed by embedding the source and target domains 

using the Grassman manifold and constructing a geodesic 

manifold between the two points. The infinite number of 

subspaces were integrated along the flow to construct a 

path that is later used to form an infinite-dimensional 

feature vector. The inner product between these feature 

vectors defines a kernel function that is invariant to the 

domains. Sun et al. [3] proposed a Subspace Distribution 

Alignment (SDA) to improve both the SA dan GFK by 

aligning both the source distribution data and the source 

subpace to the target distribution data in the target 

subspace. Once this is done, the same classifier used in 

source domain can be applied directly in the target 

domain.   

Besides the two groups above, Zhang et al. [5] 

proposed to fuse both the data-centric and subspace-

centric approaches. In their seminal work, they developed 

the Joint Geometrical and Statistical Alignment (JGSA) 

method that splits marginal and conditional distributions 

into two subspaces and projects these subspaces using the 

SA technique.  

Our work is based on the BDA and the JGSA. 

However, the BDA is only focusing on improving the 

class-imbalance in unified subspace and has two 

drawbacks: (1) it only exploits shared features in two 

domains, which fails when the two domains have a large 

discrepancy, and (2) it ignores the importance of the 

subspace centric. For the JGSA, as mentioned in the 

introduction, assume the data weight is equally 

distributed in marginal and conditional distribution. This 

work will highlight the marginal and conditional 

distribution imbalance weight problem in JGSA. The 
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results obtained illustrate the improvement in the JGSA 

in terms of accuracy in unsupervised domain adaptation. 

III. FORMULATION 

A. Problem Definition 

Definition 1 (Domain). The source domain data 

denoted as Xs ∈  ℝ𝐷 𝗑 𝑛𝑠 , are drawn from the distribution 

𝑃𝑠(Xs) and the target domain denoted as Xt ∈  ℝ𝐷 𝗑 𝑛𝑡 are 

drawn from 𝑃𝑡(Xt), where D is the dimension of 𝑛𝑠 and 

𝑛𝑡 , while 𝑛𝑠  and 𝑛𝑡  are the number of data instances in 

the source and target domain, respectively. Ds =

{(𝑥1, 𝑦1). . . (𝑥𝑛𝑠
, 𝑦𝑛𝑠

)}  is defined as the labeled source 

domain and Dt = {(𝑥1, 𝑦1). . . (𝑥𝑛𝑡
, 𝑦𝑛𝑡

)} is defined as the 

unlabelled target domain, where 𝑥 ∈  ℝ𝐷.  

Definition 2 (Task). The assumption here is that even 

though the feature space and the label space are the same, 

i.e. Xs = Xt and Ys = Yt , due to the dataset shift, their 

distributions are not. In other words, their marginal 

distributions would not be the same, i.e. 𝑃𝑠(Xs) ≠ 𝑃𝑡(Xt). 

This is based on a data-centric group that assumes that 

there is a joint or unified subspace ∅(.) that is, however, 

not valid, particularly when the dataset shift is large. 

Therefore, we assume 𝑃𝑠(∅(X
s
)) ≠ 𝑃𝑡(∅(X

t
))  for the 

marginal distribution, and 𝑃𝑠(Ys|∅(X
s
)) ≠ 𝑃𝑡(Yt|∅(X

t
)) 

for the conditional distribution. The task of the 

unsupervised domain adaptation is then to learn the labels 

𝑦𝑡  of Dt by leveraging the source domain D𝑠.  

B. Balanced Weight Joint Geometrical and Statistical 

Alignment 

Since BW-JGSA is based on the conventional JGSA, it 

basically inherits all of the JGSA properties. Hence, BW-

JGSA also (1) minimizes the distribution difference 

between the two domains and handles the class biases 

accordingly, (2) reduces the divergence between the 

source and target subspaces, (3) maximizes the variance 

of the target domain, and (4) optimizes and preserves the 

within-class and between-class variances of the source 

domain. The main difference with the conventional JGSA, 

however, is the incorporation of the balanced weight 

factor, 𝜇, in property (1) above. 

To reduce the difference between marginal 

distributions in 𝑃𝑠(Xs)  and 𝑃𝑡(Xt) , we follow [10] in 

employing the MMD to compute the distance between 

the sample mean of the source and target data in the k-

dimensional embedding.   

min
𝐴,𝐵

‖
1

𝑛𝑠
∑ 𝐴𝑇𝑥𝑠𝑖𝑥𝑠𝑖∈Xs

−
1

𝑛𝑡
∑ 𝐵𝑇𝑥𝑡𝑗𝑥𝑡𝑗∈X𝑡

‖
𝐹

2

      (1) 

To reduce the difference between the conditional 

distributions 𝑃𝑠(Ys|(X
s
)) and 𝑃𝑡(Yt|(Xt

)) , sufficient 

labels in the target view are needed. However, since there 

is no labeled data exists in the target view, we follow 

Long’s [9] technique that utilizes target pseudo labels 

predicted by the source domain classifier to represent the 

class-conditional data distributions in the target domain. 

The pseudo labels in the target domain are iteratively 

refined to reduce the difference in conditional 

distributions with the source domains. This method can 

minimize the conditional distribution shift between 

domains. 

min
𝐴,𝐵

∑ ‖
1

𝑛𝑠
(𝑐)

∑ 𝐴𝑇𝑥𝑠𝑖𝑥𝑠𝑖∈X𝑠
(𝑐) −

1

𝑛𝑡
(𝑐)

∑ 𝐵𝑇𝑥𝑡𝑗𝑥𝑡𝑗∈X𝑡
(𝑐) ‖𝐶

𝑐=1
𝐹

2

 (2) 

We then employ balance weight to both the marginal 

and conditional distributions. In the traditional JGSA, the 

weight of both the marginal and conditional distributions 

between domains are equally adjusted. This approach will 

lead to undesirable bias since marginal distributions are 

more dominant when they are similar and vice versa. The 

balance weight exploits a balance weight factor, 𝜇 to 

leverage the different contribution of distributions: 

D (Ds, Dt) ≈ (1 - 𝜇) D((𝑃𝑠(Xs), 𝑃𝑡(Xt)) + 𝜇(𝑃𝑠(Ys|∅

(X
s
)), 𝑃𝑡(Yt|∅(X

t
)))                      (3) 

by combining the Eq. (1), (2), and (3), the new 

representation can be formulated as below: 

D (Ds, Dt) ≈ (1 - μ) ‖
1

ns

∑ A
T
xsixsi∈Xs

-
1

nt

∑ BTxtjxtj∈Xt
‖

ℋ

2

 +

                         μ ∑ ‖
1

𝑛𝑠
(𝑐)

∑ 𝐴T𝑥𝑠𝑖𝑥𝑠𝑖∈X𝑠
(𝑐) −𝐶

𝑐=1

                         
1

𝑛𝑡
(𝑐)

∑ 𝐵T𝑥𝑡𝑗𝑥𝑡𝑗∈X𝑡
(𝑐) ‖

ℋ

2

                               (4) 

where ℋ  denotes the reproducing kernel Hilbert space 

(RKHS), c ∈ {1,2,….,C} is the distinct class label. X𝑠
(𝑐) 

is the set of data instances from class c in the i-th source 

domain and 𝑛𝑠
(𝑐) is the number of data instances X𝑠

(𝑐). 

Correspondingly, X𝑡
(𝑐) is the set of data instances from 

class c in the i-th target domain and 𝑛𝑡
(𝑐) is the number of 

data instances X𝑠
(𝑐) . The final distribution divergence 

minimization term can be rewritten as: 

min
A,B

Tr ([𝐴𝑇 𝐵𝑇] [
Mss Mtt

Mts Mst
] [

𝐴
𝐵

])                (5) 

where 

Mss = Xs((1 −  μ)Ls  +  μ ∑ 𝐿𝑠
(𝑐)𝐶

𝑐=1 ) X𝑠
𝑇  

Ls=
1

𝑛𝑠𝑛𝑠
1s1s

T,  (𝐿𝑠
(𝑐)

)𝑖𝑗 = {

1

𝑛𝑠
(𝑐)

𝑛𝑠
(𝑐) 𝑥𝑖 , 𝑥𝑗 ∈ X𝑠

(𝑐)

0 otherwise

      (6) 

Mtt = Xt((1 −  μ)Lt  +  μ ∑ 𝐿t
(𝑐)𝐶

𝑐=1 ) Xt
𝑇  

 Lt =
1

𝑛𝑡𝑛𝑡
1t1t

T,(𝐿𝑡
(𝑐)

)𝑖𝑗 = {

1

𝑛𝑡
(𝑐)

𝑛𝑡
(𝑐) 𝑥𝑖 , 𝑥𝑗 ∈ X𝑡

(𝑐)

0 otherwise

       (7) 

Mts = Xt((1 −  μ)Lts  +  μ ∑ 𝐿ts
(𝑐)𝐶

𝑐=1 ) Xs
𝑇  

Lts=
−1

𝑛𝑡𝑛s
1t1s

T, (𝐿𝑡𝑠
(𝑐)

)𝑖𝑗 = {

−1

𝑛𝑡
(𝑐)

𝑛𝑠
(𝑐) 𝑥𝑗 ∈ X𝑡

(𝑐)
, 𝑥𝑖 ∈ X𝑠

(𝑐)

0 otherwise

 (8) 
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Mst = Xs((1 −  μ)Lst  +  μ ∑ 𝐿st
(𝑐)𝐶

𝑐=1 ) Xt
𝑇  

Lst=
−1

𝑛𝑠𝑛𝑡
1s1t

T, (𝐿𝑡
(𝑐)

)𝑖𝑗 = {

−1

𝑛𝑠
(𝑐)

𝑛𝑡
(𝑐) 𝑥𝑖 ∈ X𝑠

(𝑐)
, 𝑥𝑗 ∈ X𝑡

(𝑐)

0 otherwise

 (9) 

For M, it can be seen that, instead of measuring the 

difference and balance the data between cross-domain, 

Mts and Mst, the Mss and Mtt  allow us to measuring and 

balance the associated data within source and target 

domains. To reduce the divergence between source and 

target subspaces, we use Eq. (10) to shift both the source 

and target subspaces to be close to one another. Eq. (10) 

is the geometrical operational to minimize the subspace 

gap by using the Frobenius norm.  In BDA, this term only 

considers a single embedded matrix Z due to the 

assumption there is a joint subspace, while in JDA this 

term of subspace minimizing divergence is not 

considered. 

min
A, B

‖𝐴 − 𝐵‖𝐹
2                            (10) 

To maximize the variance of the target domain and 

preserve the embedded data properties, we use Eq. (11) to 

achieve this purpose, 

max
𝐵

𝑇𝑟(BTStB)                           (11) 

where S = [St, . . . , St]  is obtained by replicating St  p 

times. St which is defined as St = X𝑡H𝑡X𝑡
𝑇 is essentially a 

covariance matrix, H𝑡 = I𝑡 −
1

𝑛𝑡
1𝑡1𝑡

𝑇  is the centering 

matrix, while 𝐼𝑡 is the identity matrix and 1𝑡 ∈ ℝ𝑛𝑡 is the 

column vector with all ones. 

To preserve the source domain’s discriminative 

information, we use Eqs. (12) and (13). The 

discriminative information is important to preserve since 

the labeled data is only available in the source domain. In 

this equation, the inter-class is to be maximized, while the 

intra- class is to be minimized. 

max
𝐴

𝑇𝑟(𝐴TS𝑏A)                              (12) 

min
𝐴

𝑇𝑟(ATS𝑤A)                             (13) 

S𝑏 = ∑ 𝑛𝑠
(𝑐)

(𝑚𝑠
(𝑐)

− �̅�𝑠)(𝑚𝑠
(𝑐)

− �̅�𝑠)𝑇𝐶
𝑐=1          (14) 

S𝑤 =  ∑ X𝑠
(𝑐)𝐶

𝑐=1 H𝑠
(𝑐)

(X
𝑠
(𝑐))𝑇                  (15) 

where S𝑏  is inter-class variance matrix and S𝑤  is intra-
class variance matrix, both from the source domain data, 

X𝑠
(𝑐)

∈  ℝ𝐷×𝑛𝑠
(𝑐)

 is the set of data instance from class c, 

𝑚𝑠
(𝑐)

=
1

𝑛𝑠
(𝑐) ∑ 𝑥𝑖

(𝑐)𝑛𝑠
(𝑐)

𝑖=1 , �̅�𝑠 =
1

𝑛𝑠
∑ 𝑥𝑖

𝑛𝑠
𝑖=1 , H𝑠

(𝑐)
= I𝑠

(𝑐)
−

1

𝑛𝑠
(𝑐) 1𝑠

(𝑐)
(1

𝑠
(𝑐))𝑇 is the centering matrix of intra-class data 

within class c, I𝑠
(𝑐)

∈  ℝ𝑛𝑠
(𝑐)

×𝑛𝑠
(𝑐)

 is the identity matrix, 

1𝑠 ∈ ℝ𝑛𝑠
(𝑐)

 is the number of source samples in class c. 

Overall, the four criteria above can be formulated by 

incorporating Eqs. (5), (10), (11), (12), and (13) into a 

joint objective function and optimization problem as in 

Eq. (16), as we follow [5]: 

max
𝛼{target var.} + 𝛽{inter-class var.}

{distribution shift} + 𝜆{subspace shift} + 𝛽{intra-class var.}
 

max
𝐴,𝐵

𝑇𝑟([𝐴𝑇 𝐵𝑇][
𝛽𝑆𝑏 0

0 𝛼𝑆𝑡
][

𝐴
𝐵

])

𝑇𝑟([𝐴𝑇 𝐵𝑇][
𝑀𝑠𝑠+𝜆𝐼+𝛽𝑆𝑤 𝑀𝑠𝑡−𝜆𝐼

𝑀𝑡𝑠−𝜆𝐼 𝑀𝑡𝑡+(𝜆+𝛼)𝐼
][

𝐴
𝐵

])
          (16) 

The objective function of Eq. (16) is to encourage the 

numerator to be maximized and the denominator to be 

minimized. We also iteratively update the pseudo labels 

of the target domain data using the learned transformation 

to improve the labeling quality until convergence. 

C. Learning Algorithm 

The domain adaptation alignment in geometrical and 

statistical can be implemented by searching the best 

projection matrix of A and B. We begin with representing 

the A and B matrix in Eq. (16) as W. The above 

optimization can be maximized by treating the 

denominator to be small to control the solution scale. The 

above objective function is invariant to rescaling 𝑊 ↦
𝛼𝑊. Hence, Eq. (16) can be rewritten as 

max
𝑊

𝑇𝑟 (𝑊𝑇 [
𝛽𝑆𝑏 0

0 𝛼𝑆𝑡
] 𝑊)                        (17) 

𝑠. 𝑡. 𝑇𝑟 (𝑊𝑇 [
𝑀𝑠𝑠 + 𝜆𝐼 + 𝛽𝑆𝑤 𝑀𝑠𝑡 − 𝜆𝐼

𝑀𝑡𝑠 − 𝜆𝐼 𝑀𝑡𝑡 + (𝜆 + 𝛼)𝐼
] 𝑊)=1 

According to the constrained optimization theory, we 

denote 𝛷 = 𝑑𝑖𝑎𝑔(∅1, … . . , ∅𝑘) ∈ ℝ𝑘×𝑘  as the Lagrange 

multiplier and derive the Lagrange function for Eq. (17) 

as: 

L =  𝑇𝑟 (𝑊𝑇 [
𝛽𝑆𝑏 0

0 𝛼𝑆𝑡
] 𝑊)                (18) 

+𝑇𝑟((𝑊𝑇 [
𝑀𝑠𝑠 + 𝜆𝐼 + 𝛽𝑆𝑤 𝑀𝑠𝑡 − 𝜆𝐼

𝑀𝑡𝑠 − 𝜆𝐼 𝑀𝑡𝑡 + (𝜆 + 𝛼)𝐼
] 𝑊 − 𝐼)𝛷 

by setting 
𝜕𝐿

𝜕𝑊
= 0, we obtained: 

[
𝛽𝑆𝑏 0

0 𝛼𝑆𝑡
] 𝑊 = [

𝑀𝑠𝑠 + 𝜆𝐼 + 𝛽𝑆𝑤 𝑀𝑠𝑡 − 𝜆𝐼
𝑀𝑡𝑠 − 𝜆𝐼 𝑀𝑡𝑡 + (𝜆 + 𝛼)𝐼

] 𝑊𝛷 

(19) 

where Φ = diag(∅1,…..,∅k)  are the k smallest 

eigenvectors and W= [ 𝑊1 ,…,  𝑊𝑘 ] contains the 

corresponding eigenvectors. By finding W, the process to 

obtain the projection matrix of A and B can be solved. 

Finally, the expected output is the two embedded 

matrices, Z𝑠=𝐴𝑇Xs and Z𝑡=𝐵𝑇Xt. 

Kernelization: For nonlinear problems, we follow [9] 

that applies the kernel mapping 𝜓: 𝑥 ↦ 𝜓(𝑥), or 𝜓(X) =
[𝜓(𝑥1), … , 𝜓(𝑥𝑁)]  and kernel matrix 

K=  𝜓(𝑋)𝑇𝜓(X)ℝ𝑁×𝑁 , where N is the number of all 

samples in source and target domains. The kernel matrix 

is constructed using linear or RBF kernel. 

IV. EXPERIMENTS 

In this section, we evaluate our proposed approach 

through a number of experiments. 

Journal of Advances in Information Technology Vol. 13, No. 1, February 2022

© 2022 J. Adv. Inf. Technol. 24



A. Dataset Preparation 

We adopt two widely-used domain adaptation datasets 

in this paper: (1) The Office+Caltech, and (2) The USPS+ 

MNIST. The Office dataset consists of three real-world 

object domains: Amazon, Webcam, and DSLR, and 

contains 1410 images with 10 object categories. Similarly, 

the Caltech-256 dataset has 10 object categories with 

1123 images. The USPS(U) and MNIST(M) are hand-

written digits recognition datasets. The USPS(U) dataset 

consists of 7,291 training images and 2,007 test images of 

size 16×16 each. The MNIST(M) dataset contains a 

training set of 60,000 samples and a test set of 10,000 

samples of size 28×28 each.  

B. Baseline 

One non-domain adaptation and seven state-of-the-art 

domain adaptation approaches were implemented for 

comparisons purpose, and these are (1) 1-Nearest 

Neighbour Classifier (1-NN), (2) Subspace Alignment 

(SA), (3) Subspace Distribution Alignment (SDA), (4) 

Balanced Distribution Adaptation (BDA), (5) Joint 

Distribution Adaptation (JDA), (6) Transfer Joint 

Matching (TJM), (7) Transfer Component Analysis 

(TCA), and (8) Joint Geometrical and Statistical 

Alignment (JGSA). 

For our work and BDA, balance weight factor 𝜇 is 

searched from {0, 0.1, 0.2, …., 0.9, 1.0}. For the kernel-

based methods, we only used linear kernel as 

implemented in [9]. We followed the common parameter 

settings as given in [4], i.e. subspace dimension, d =100, 

regularization parameter, λ = 0.1, and the maximum 

iteration number, T = 10. In addition, we followed the 

previous work in [4], [5], [9] such that 1-NN is chosen as 

the base classifier to produce pseudo-label for the target 

domain.  

We conducted experiments on the Office+Caltech and 

USPS+MINIST dataset with SURF descriptor with linear 

kernel for low-level features. Our experiment runs on a 

PC with an Intel Core i7 CPU (6 cores) and 20 GB RAM. 

All codings were done using MATLAB. 

C. Results and Discussion 

• Classification accuracy  

We begin with the classification accuracy of BW-

JGSA along with the seven other methods as shown in 

Table I and Table II. The results are illustrated in Fig. 2(a) 

and Fig. 2(b) for better visualization.  

For object dataset results given in Table I, we observed 

that BW-JGSA outperforms all the seven methods on 

most tasks with 12 out of 12 cross-domain accuracies. On 

an average-wise, BW-JGSA outperforms others with an 

average accuracy of 50.61%. We also compared with a 

non-domain adaptation method, 1-NN, and obtained a 

9.69% improvement with BW-JGSA. When compared 

with BDA and JGSA, the improvement of BW-JGSA is 

4.54% and 1.69%, respectively. In general, all the domain 

adaptation methods outperform the non-domain 

adaptation method (1-NN). We observed that BW-JGSA 

outperforms all other methods in 2 out of 2 with an 

average accuracy of 69.65% for digit datasets.  

We also observed that TCA performs poorer compared 

to that of JDA because TCA is not considering the 

conditional distribution iterations as part of the work. The 

JDA took both marginal and conditional distribution 

iterations. However, both performed poorer compared to 

that of the BDA because of unbalanced weight for 

marginal and conditional distributions. This is consistent 

with the previous results obtained in [4]. From the table, 

it can be seen that the JGSA is the second best because 

the joint or unified subspace does not exist due to the 

large discrepancy between domains. However, similar to 

TCA and JDA, the traditional JGSA does not consider 

unbalanced weight for marginal and conditional 

distributions. 

TABLE I.  ACCURACY (%) BASED ON THE OFFICE+CALTECH256 OBJECT DATASETS 

Dataset 1-NN SA SDA TJM TCA JDA BDA JGSA BW-JGSA 

C↦A 36.01 41.23 41.75 43.95 44.89 41.65 42.48 50.20 51.88 

C↦W 29.15 33.22 31.53 33.22 36.61 34.58 38.31 43.48 46.10 

C↦D 38.21 44.59 40.13 39.49 45.86 45.22 49.68 47.77 49.68 

A↦C 34.19 36.87 37.40 39.09 40.78 36.95 37.31 38.29 42.03 

A↦W 31.18 37.63 35.59 36.61 37.63 35.59 35.59 41.35 45.42 

A↦D 35.66 33.12 31.21 38.85 31.85 45.22 45.22 45.85 45.85 

W↦C 28.76 29.30 28.94 26.18 27.16 28.94 28.41 32.50 34.55 

W↦A 31.62 32.57 32.88 32.57 30.69 32.05 31.73 40.08 40.81 

W↦D 84.71 88.54 88.54 89.17 90.45 91.08 91.08 91.08 91.71 

D↦C 29.56 30.72 33.13 31.88 32.50 30.01 29.30 31.96 34.11 

D↦A 28.28 31.73 32.78 32.67 31.52 30.79 31.52 32.98 33.29 

D↦W 83.72 89.15 88.47 92.88 87.12 92.20 92.20 91.52 91.84 

Average 40.92 44.05 43.53 44.71 44.75 45.36 46.07 48.92 50.61 

TABLE II.  ACCURACY (%) BASED ON THE USPS+MINIST DIGIT DATASETS 

Dataset 1-NN SA SDA TJM TCA JDA BDA JGSA BW-JGSA 

USPS↦MINIST 44.71 48.80 35.70 56.90 52.20 56.50 65.11 57.70 59.80 

MINIST↦USPS 65.94 67.80 65.00 69.00 54.28 61.22 56.4 79.22 79.50 

Average 55.32 58.29 50.35 62.95 53.24 58.86 60.76 68.46 69.65 
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(a) Office+Caltech256 object datasets 

 
(b) USPS+MINIST digit datasets 

Figure 2. Bar charts of accuracy (%) based on the non-domain adaptation, seven state-of-the-art methods, and our proposed method (BW-JGSA) with 
different datasets. 

• Visualization of domain adaptation methods 

To verify the advantage of BW-JGSA, we plot a 

selected five domain adaptation methods as well as the 

BW-JGSA in 3D scatter plots for cross-domain between 

object datasets Caltech vs. Webcam. From the 

observation, we can divide the scatter-plots into three 

categories. The first category is the SA and SDA plots 

(Fig. 3(a) and Fig. 3(b)) which are based on subspace 

centric group. We can observe that their distribution 

difference is still large between domains. This is because 

the SA and SDA are based on the alignment of subspace 

and do not preserve the distribution data. The second 

category is the JDA and BDA plots (Fig. 3(c) and Fig. 

3(d)) which are based on data-centric group. JDA 

considers marginal and conditional distributions to align 

the data distribution into a joint subspace. BDA is the 

improvement of JDA that optimizes the balance weight 

for marginal and conditional distributions. From Fig. 3(c) 

and Fig. 3(d), we can observe that BDA is smoother in 

data distribution than JDA.  The last category is the JGSA 

and BW-JGSA plots (Fig. 3(e) and Fig. 3(f)) that consider 

both subspace-centric and data-centric groups. Although 

we observe that both data representation is compact, BW-

JGSA gives more advantage based on the accuracy 

performance. JGSA simply optimizes two aligned 

subspaces, such that the source class information and the 

target variance can be preserved, and the two subspaces 

are made to move closer to each other by minimizing the 

distance between the two. Similar to BDA, BW-JGSA 

improves the JGSA by optimizing the balance weight, 

and the visual scatter-3D plot is smoother and balanced. 

 
(a) Aligned data classes for SA 

 
(b) Aligned data classes for SDA 
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(c) Aligned data classes for JDA 

 
(d) Aligned data classes for BDA 

 
(e) Aligned data classes for JGSA 

 
(f) Aligned data classes for BW-JGSA 

Figure 3. 3D scatter plots of source and target for cross-domain object 

dataset: Caltech vs. Webcam on 10 classes. Dim. 1, 2 and 3 represent 

the first 3-dimensional feature of the raw SURF features. Filled points 
represent source domain and empty points represent target domain. 

(Best view in color). 

• Optimum value of 𝜇  

As mentioned above, the 𝜇 value needs to be searched 

manually from cross-validation with a set of values from 

{0, 0.1, 0.2, until 1}. The 𝜇 value will be different from 

each cross-domain depending on the dataset that we used. 

The 𝜇 value technically is not a free parameter (i.e., 

regularization factor, λ), in which 𝜇 value has to be 

estimated according to data distribution.  

V. CONCLUSION 

In this paper, we have proposed a Balance Weight-

Joint Geometrical and Statistical Alignment (BW-JGSA) 

that improves the performance of JGSA as one of the 

state-of-the-art methods in unsupervised domain 

adaptation. By assuming that marginal and conditional 

distributions are equally distributed, JGSA fails to 

capitalize on the importance of each distribution 

adaptively. The BW-JGSA, on the other hand, gives 

balance weight to the JGSA by manipulating the balance 

weight factor, 𝜇 in both distributions during the 

minimization data process. In this work, the balance 

weight factor is searched manually by maximizing the 

accuracy performance. The performance has 

demonstrated that the proposed method improves the 

JGSA and outperforms the other unsupervised domain 

adaptation baseline. For future works, we aim to set the 

value of 𝜇 in automation to save the computational time 

consuming of BW-JGSA. 
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