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ABSTRACT 

Due to a lack of sustainable energy sources and the effects of climate change, 

the development of electric vehicles (EVs) have accelerated during the past years. One 

of the major technologies used in EVs, the battery, likewise contributes to the growth 

of EVs being constrained. Due to its high energy density, extended lifespan, high 

efficiency, quick charging capability, and minimal self-discharge, lithium ferro 

phosphate (LiFePO4) is among the lithium-ion batteries that is widely utilised. The 

state of charge (SOC) assessment of the battery is a crucial characteristic that must be 

carefully taken into account for battery management systems (BMS). To monitor how 

the battery pack is being charged and discharged, optimise performance, and increase 

battery life, it is essential that the SOC estimation be accurate. The SOC calculation 

gets exceedingly complicated because the battery stores energy in a chemical state that 

cannot be immediately accessed. Additionally, there are several uncertainties and 

disturbances that make judging the accuracy of a SOC estimation difficult. This 

project's objectives concentrate on creating a LiFePO4 battery model utilising an 

Equivalent Circuit Model (ECM) to forecast SOC using the Unscented Kalman Filter 

(UKF) technique. Two different types of battery ECM modules with two RC pairs and 

three RC pairs were studied to compare the model's accuracy. Using the dynamic 

behaviours of a LiFePO4 battery from an experimental data, the battery ECM 

parameters were calculated using the MATLAB Parameter Estimation Tool. Constant 

Discharge Test (CDT), Pulse Discharge Test (PDT), and Random Charge and 

Discharge Test (RCDT) have all been used in experiments to examine the dynamic 

properties of the LiFePO4 battery. Battery ECMs with two RC pair and three RC pairs 

were used to achieve the SOC estimation using the UKF block algorithm in MATLAB. 

Then, using error analysis tools including Mean Square Error (MSE), Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE), the accuracy of the battery ECMs 

was analysed. The most precise battery ECM was chosen to be used in the UKF 

method to predict the SOC of a LiFePO4 battery based on the findings of the error 

analysis. After that, the simulation's result is verified by comparison to the actual SOC 

using the Coulomb Counting technique. Then, using error analysis like MAE, MSE, 

and RMSE, the performance of a UKF algorithm was compared to an Extended 

Kalman Filter (EKF). The most accurate method for estimating value of SOC is chosen 

depend on the results of the error analysis. 

  



vii 

ABSTRAK 

Disebabkan kekurangan sumber tenaga mampan dan kesan perubahan 

iklim, pembangunan kenderaan elektrik (EV) telah dipercepatkan sejak beberapa 

tahun lalu. Salah satu teknologi utama yang digunakan dalam EV, bateri, juga 

menyumbang kepada pertumbuhan EV yang dikekang. Disebabkan oleh 

ketumpatan tenaga yang tinggi, jangka hayat yang dilanjutkan, kecekapan tinggi, 

keupayaan pengecasan pantas dan pelepasan diri yang minimum, litium ferro fosfat 

(LiFePO4) adalah antara bateri litium-ion yang digunakan secara meluas. Penilaian 

keadaan pengecasan (SOC) bagi bateri ialah ciri penting yang mesti diambil kira 

dengan teliti untuk sistem pengurusan bateri (BMS). Untuk memantau cara pek bateri 

dicas dan dinyahcas, mengoptimumkan prestasi dan meningkatkan hayat bateri, 

adalah penting bahawa anggaran SOC adalah tepat. Pengiraan SOC menjadi sangat 

rumit kerana bateri menyimpan tenaga dalam keadaan kimia yang tidak boleh 

diakses dengan segera. Selain itu, terdapat beberapa ketidakpastian dan gangguan 

yang menyukarkan menilai ketepatan anggaran SOC. Objektif projek ini 

menumpukan pada mencipta model bateri LiFePO4 menggunakan Model Litar 

Setara (ECM) untuk meramalkan SOC menggunakan teknik Penapis Kalman 

Tidak Berbau (UKF). Dua jenis modul ECM bateri dengan dua pasangan RC dan 

tiga pasangan RC telah dikaji untuk membandingkan ketepatan model. 

Menggunakan tingkah laku dinamik bateri LiFePO4 daripada data 

eksperimen, parameter ECM bateri dikira menggunakan Alat Anggaran 

Parameter MATLAB. Ujian Nyahcas Malar (CDT), Ujian Nyahcas Nadi (PDT), dan 

Ujian Caj dan Nyahcas Rawak (RCDT) mempunyai semuanya telah digunakan 

dalam eksperimen untuk mengkaji sifat dinamik bateri LiFePO4. ECM bateri 

dengan dua pasangan RC dan tiga pasangan RC telah digunakan untuk mencapai 

anggaran SOC menggunakan algoritma blok UKF dalam MATLAB. Kemudian, 

menggunakan alat analisis ralat termasuk Ralat Mean Square (MSE), Ralat Min 

Mutlak (MAE) dan Ralat Purata Purata Akar (RMSE), ketepatan ECM bateri telah 

dianalisis. ECM bateri yang paling tepat telah dipilih untuk digunakan dalam 

Kaedah UKF untuk meramalkan SOC bateri LiFePO4 berdasarkan penemuan 

analisis ralat. Selepas itu, keputusan simulasi disahkan dengan perbandingan 

dengan SOC sebenar menggunakan teknik Coulomb Counting. Kemudian, 

menggunakan analisis ralat seperti MAE, MSE dan RMSE, prestasi algoritma 

UKF dibandingkan dengan Penapis Kalman Lanjutan (EKF). Kaedah yang paling 

tepat untuk menganggar nilai SOC dipilih bergantung kepada keputusan 

analisis ralat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Energy storage is required for solar energy harvesting as well as electric 

vehicles to work properly. Lead acid batteries are the most often utilised in 

photovoltaic solar (PV) systems, according to [1]. However, a recent study found that 

lithium-ion batteries had a significant edge over lead acid batteries in terms of energy 

efficiency and economic.  

Lithium-ion batteries have also been widely employed in EV applications 

because to its extended cycle lifespan, great energy efficiency and density, and 

relatively low environmental impact [2]. Because lithium-ion batteries were 

commonly using in electric vehicles and solar photovoltaic systems, the battery 

management systems (BMS) is critical for ensuring safe battery operation through 

monitoring a charge and discharge process due to the state of charge (SOC), state of 

health (SOH), state of power (SOP), and state of energy [2]. 

Estimating battery status is a crucial BMS function. The two crucial states that 

need to be calculated are the state of charge (SoC) and the state of health (SoH). In this 

situation, SoH reveals the battery's performance deterioration while SoC provides 

information on the battery's remaining capacity. The EV driver has to know these 

battery states in order to gauge the battery pack's current condition. Due to the fact that 

states cannot be directly assessed, it is regarded as the most difficult assignment for a 

BMS. Additionally, the estimation should be performed without impairing the EV's 

functionality [2]. 

Generally, SoC is typically referred to as the battery's remaining stored energy. Also, 

the SoC estimate serves as the "fuel gauge" for EV applications, which is essential for 
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estimating the driving range. To avoid EVs running out of juice while driving, a precise 

SoC estimate is necessary [3]. Additionally, SoC is crucial for improving battery 

efficiency by carefully regulating the charge - discharge operations, particularly in 

hybrids energy storage systems.   

However, calculating SoC is a challenging procedure that depends on a number 

of variables, including temperature, useable capacity, and series resistance [3]. There 

have been a number of strategies for SoC estimation that may be divided into three 

groups: 

(i) Direct measurement techniques.  

(ii) State-space for model-based techniques. 

(iii) Black-box for model-based techniques. 

 

1.2  Battery Management Systems 

The major goal of BMS installation is to continually monitor and manage the 

lithium-ion battery's varied states during its operating duration [4]. Battery 

characteristics such as operational current and voltage, SoC, ambient temperature, 

SoH, battery ageing, and internal impedance must be observed and estimated by the 

BMS [4]. Figure 1.1 shown an example of a generic BMS. 
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Figure 1.1 Block Diagram of General BMS [4] 

 

1.2.1 Modelling of Battery 

The BMS uses a battery model to represent the real battery in an indirect way. 

The surfaces temperature, terminal currents, and voltages of the battery are all sensed 

using various sensors. The battery model will then be used to estimate battery states 

such like SoC, SoH, and SoP using all of the data. In fact, for the batteries model to 

work correctly, the parameters must always be pre-determined [5]. 

Numerous battery models have already been investigated. They are usually 

divided into three types: equivalent circuit modeling, empirical model, and 

electrochemical model. Because it is based on physical's and chemical reactions in the 

battery, the electrochemical model is thought to be the most accurate. However, due 

to the model's complexity, that is not the best model for implementation in the BMS. 

The empirical model is a simplified variant of the electrochemical model, often known 

as a mathematical model. The complexity is decreased, but the batteries model 

accuracy is dropped by over 20%. To represent the battery properties, an equivalent 

circuit model (ECM) is made up of a series resistor and a resistor-capacitor (RC) pair. 
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It has a high degree of precision and is less difficult to implement in the BMS 

according to [5]. 

1.2.2 State of Charge Estimation 

The SOC for a battery will not be directly measure because it represents the 

electricals energy stored in a chemical state. As a result, SOC must be calculated in 

the BMS using the battery model and measured battery data including surface 

temperature, terminal current, and voltage. The SOC's performance must be accurate, 

dependable, and stable. Many approaches for estimating SOC have been investigated. 

They may be divided into three categories: conventional methods, adaptive methods, 

and learning algorithms. The open circuit voltage (OCV) approach is a conventional 

method that has good accuracy but cannot be used in an online BMS application. The 

Kalman Family Filters as well as the Particle Filter (PF) are examples for adaptive 

filters according to [6]. 

1.3 Problem statement 

The lithium ferro phosphate (LiFePO4) batteries are widely used in electric 

vehicles (EVs) as an energy storage component since it can provide a larger energy 

capacity over a longer length of time and is ecologically friendly. As a result, a BMS 

that incorporates a battery model becomes essential for serving like a guide for the 

system styler to predict the battery's dynamic behaviours. The BMS will accurately 

estimate the battery's SOC and then optimise the battery's performance by controlling 

the charging or discharging process of the battery by using an accurate batteries ECM 

and an accurate estimation state algorithm. 

However, due to numerous uncertainties and noises, designing the SOC 

estimation of a battery accurately is exceedingly difficult. The precision of the SOC 

predictions would decrease as a result of the effects of the ambient air temperature, 

sensor measurement stability, battery temperature and fluctuations in terminal current 
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and voltage. Consequently, in order to account for all the noises as well as uncertainties 

with a more precise predictions of the battery SOC, more research on a battery SOC 

estimate is therefore very essential. 

1.4 Research Objectives 

The objectives of the research are: 

(a) To develop a model of battery by using the Equivalent Circuit Model (ECM) 

and compute the parameters of the battery model by using experimental data 

on the properties of the LiFePO4 battery. 

(b) To implement the battery ECMs for estimation SOC by using the Unscented 

Kalman Filter (UKF) algorithm, then will determine the optimal design of 

battery ECM. 

(c) To analyse the performances of the UKF algorithm SOC estimation by 

comparing a simulation results with the real SOC by Coulomb Counting (CC) 

of a LiFePO4 battery and with the Extended Kalman Filter (EKF) algorithm 

that has been Procedure from a previous researches. 

 

1.5 Research Scopes 

This research can focus on the following scopes in order to fulfil the above-

mentioned objectives: 

(a) The LiFePO4 battery is selected due to its environmentally friendly and fast 

charging performance. 
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(b) Battery ECM’s is considered as a cell level only, making it possible to ignore 

issues with many cells such cell imbalance as well as individual cell voltage 

monitoring. 

(c) Two levels of RC pairs component will use in equivalent circuit model for a 

battery modelling. 

(d) UKF method is chose to performing Soc estimate due to its robustness and 

accuracy. 

(e) The performances for UKF algorithm will analyze by comparing to the real 

SOC by CC and EKF technique. 

 

1.6  Research Outline  

In chapter 2, several literatures and earlier works are researched and analysed 

in order to continue with this report. The battery modelling plus SOC estimation 

techniques are the two primary sections of the literature review. To find the optimum 

battery model to deploy, various battery models are evaluated and compared. 

Following that, numerous SOC estimate approaches are investigated in order to 

compare their performance and complexity. As a result, the SoC estimate approach is 

chosen because of its high accuracy and simplicity. 

In chapter 3, the approach for achieving the research aims is proposed. The 

process begins with the LiFePO4 experimental work. The Pulse Discharge Test (PDT), 

Random Charge and Discharge Test (RCDT), and Constant Discharge Test (CDT) 

tests are used to assess the dynamic properties of the battery, allowing the battery 

parameters of the model to be calculated. Because the SOC of a LiFePO4 batteries 

cannot be determined directly, the SOC is calculated using the Coulomb Counting 

technique based on observed current. This SOC is regarded as the LiFePO4 battery's 

true SOC. After that, the SOC will be calculated using the Unscented Kalman Filter 

(UKF). The UKF's performance will be assessed by comparing the error analysis to 
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that of the real SOC and EKF technique. As a result, the optimum strategy for 

estimating SOC may be given. 

The findings have been discussed in chapter 4. The PDT, CDT, and RCDT are 

presented. As a result, the LiFePO4 battery's dynamic characteristics may be shown. 

Then, using the Coulomb Counting technique, the actual SOC LiFePO4 battery was 

identified. This chapter also covers the findings from the previous researcher's study, 

which used the EKF technique to estimate SOC. The outcomes of the estimate of the 

battery's ECM RC parameters using the MATLAB Parameter Estimation Tool are also 

shown. After that, the effectiveness of two types battery ECMs is presented and 

analysed using MATLAB's UKF block technique. In order to describe the final 

outcome, the performances for an UKF algorithm is compared to the performances of 

an EKF method. 

Finally, chapter 5 includes conclusion of the project and it discuss the future 

work that needs to be conducted for future. This involves using new estimation 

algorithm such like Dual UKF (DUKF) and Dual EKF (DUKF) to estimate online SOC 

for a LiFePO4 battery because these amended algorithms have a better accuracy and 

performance in state estimation. 
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