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ABSTRACT 

The stability of the power system is dependent on the reliability of the various 

components in the network. A power transformer is a critical component of a power 

system's transmission and distribution infrastructure. However, it is susceptible to a 

wide range of problems, which can lead to power outages, which in turn can have a 

significant economic and social impact. Detecting and analyzing internal faults in a 

power transformer is a complex process that requires the use of appropriate fault 

detection procedures to ensure that the related repercussions minimized. Internal and 

external defects can founded in transformers. In addition to asymmetrical faults and 

faults from line to ground and line to line, winding flaws and winding insulation 

failures can cause turn-to-turn or ground faults, depending on the kind of external fault. 

Magnetic inrush current, lightning strikes, long-term overload, and failure of the 

cooling system are all possible causes of insulation deterioration. Dissolved gas 

analysis (DGA) is frequently used to discover transformer faults in the early stages. 

With the Duval Triangle as a focal point, this thesis provides the basics of introduction 

to DGA transformer interpretation. Precision in DGA laboratory findings may impact 

the accuracy of DGA diagnosis, as demonstrated by this study Both the previous gas 

levels and the lowest gas levels in service above which diagnostics can be attempted 

are listed below. There are certain users who are apprehensive about using triangular 

coordinates even though the Duval Triangle approach the specified in the IEC Standard 

and through these public assessments. In addition to this effort, MATLAB that used to 

construct a specialized machine learning approach (MLT) for the detection and 

classification of transformer faults. Measurements on two separate sets of 

transformers, one in good working order and the other with various faults, provide the 

necessary data for MLT training and testing (axial displacement, radial deformation, 

disc space variation, and short circuit of winding). The suggested method for fault 

detection the projected to produce comparable results to existing approaches because 

of its excellent MLT facilities during the learning and testing stages.  
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ABSTRAK  

Kestabilan sistem kuasa bergantung pada kebolehpercayaan pelbagai komponen 

dalam rangkaian. Pengubah kuasa ialah komponen penting dalam infrastruktur 

penghantaran dan pengagihan sistem kuasa. Walau bagaimanapun, ia mudah terdedah 

kepada pelbagai masalah, yang boleh menyebabkan gangguan bekalan elektrik, yang 

seterusnya boleh memberi kesan ekonomi dan sosial yang ketara. Mengesan dan 

menganalisis kerosakan dalaman dalam pengubah kuasa adalah proses yang kompleks 

yang memerlukan penggunaan prosedur pengesanan kerosakan yang sesuai untuk 

memastikan kesan yang berkaitan diminimumkan. Kecacatan dalaman dan luaran 

boleh didapati dalam transformer. Sebagai tambahan kepada ralat dan ralat asimetri 

dari talian ke tanah dan talian ke talian, kecacatan belitan dan kegagalan penebat 

belitan boleh menyebabkan ralat belokan ke belokan atau tanah, bergantung pada jenis 

ralat luaran. Arus masuk magnet, sambaran petir, beban berlebihan jangka panjang dan 

kegagalan sistem penyejukan adalah semua kemungkinan penyebab kemerosotan 

penebat. Analisis gas terlarut (DGA) sering digunakan untuk menemui kerosakan 

transformer pada peringkat awal. Dengan Segitiga Duval sebagai titik fokus, tesis ini 

menyediakan pengenalan asas kepada tafsiran pengubah DGA. Ketepatan dalam 

penemuan makmal DGA mungkin memberi kesan kepada ketepatan diagnosis DGA, 

seperti yang ditunjukkan oleh kajian ini Kedua-dua paras gas sebelumnya dan paras 

gas terendah dalam perkhidmatan di atas yang mana diagnostik boleh dicuba 

disenaraikan di bawah. Terdapat pengguna tertentu yang bimbang tentang 

menggunakan koordinat segi tiga walaupun pendekatan Segitiga Duval dinyatakan 

dalam Piawaian IEC dan melalui penilaian awam ini. Sebagai tambahan kepada usaha 

ini, MATLAB digunakan untuk membina pendekatan pembelajaran mesin khusus 

(MLT) untuk pengesanan dan pengelasan kerosakan transformer. Pengukuran pada 

dua set transformer yang berasingan, satu dalam keadaan berfungsi dengan baik dan 

satu lagi dengan pelbagai kerosakan, menyediakan data yang diperlukan untuk latihan 

dan ujian MLT (anjakan paksi, ubah bentuk jejari, variasi ruang cakera dan litar pintas 

penggulungan). Kaedah pengesanan kerosakan yang dicadangkan diunjurkan 

menghasilkan keputusan yang setanding dengan pendekatan sedia ada kerana 

kemudahan MLT yang sangat baik semasa peringkat pembelajaran dan ujian. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problems Backgrounds   

The facts in the power's systems, are that the transformers are the ones of the 

most importin significances the pieces of pricey equipment’s, in powers electricity 

systems, it is inevitable that their failure will have a substantial negative influence on 

the powers supplies that’s  may  results at the catastrophic at blackout as well as highest 

maintenances that cost. As a result, most critical responsibility in system electrical 

powers is to ensure the dependability of transformers are defects detection 

technologies that are properly implements may also significantly cut power 

transformer maintenances costs, while simultaneously ensuring steady and dependable 

power supply. 

In the power generation and power transmission lines system (power 

distribution and transmission network), Transformers are the important elements that 

plays the major roles of the formations of the mains structures on system powers 

networks.  

Transformers are the most important part of the generation and transmission 

network. It plays a very necessary role that in transferring power electricity from 

generation site to transmissions lines and from there to the distribution stage. Various 

type in transformer is widely use’s at powers distributions networks, they have types, 

including, single-phase, oil-filled, and dry single-phase, and those are a part of the 

three-phase banks to provide power to consumers. The failure that occurs in singles-

phase and the three-phases transformer leads to disruption at electrical power supply 

and often leads to major breakdowns in the processing system, financial losses and the 

suspension of some factories and public services, and sometimes-human losses. The 
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failure that often occurs in power transformers and leads to a short circuit between the 

coils is the deterioration in the insulation property of the transformer windings, and 

This is an important and pivotal thing for researchers in this field. The detection 

in the initial stages of the failure in the overlapping coil of transformer winding is not 

easy, especially when diagnosing and examining by traditional methods such 

conventional differential relay protection mechanisms. In such cases, the error appears 

as a short circuit in the coil, so the differential relay operation and the phase of the 

short circuit are very possible and lead to great and serious damage to the coil and the 

iron core. Researchers all the time struggle in development by keeping pace with 

scientific development and developing new techniques that fit the need to detect and 

diagnose faults and study manufacturing faults for overlapping coils. With all these, 

the practical implementation involves a few challenges, including high reliability, high 

accuracy, high cost, and the need to add and install new equipment inside the 

transformer housing, which may lead to an increase in size. 

In addition to that, the development in communications system, especially the 

Internet, may not be sufficient in the speed of transmission and diagnosing faults. 

In this thesis, the mechanism of the detections to classifications of the faults in 

the transformers will be determine used the theory’s specific machine learning 

technique which (MLT) is implemented using MATLAB environment. 

1.2 Problems Statement   

Transformers is the most importance paramount in the systems networks of 

supply and transmitting electrical energy to consumers, and any fault or defect in it 

may cost a lot of money. It may take a long time to fix them if small mistakes are not 

detected early, which may grow and grow and become catastrophic mistakes. 

Troubleshooting in   transformer system is a major concern in power system protection. 

To preserve the electrical power system and minimize further social and economic 
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expenses caused because of the interruption of loads, diagnostic measures must be 

identified the quickly and implemented. The two types of transformer's faults, that 

might have occurs: are internal flaws and external issues faults (insulations 

deteriorations, windings failures, overheats, and contaminations of oils). If the 

insulator fails, the phase-to-phase faults may be classified. As an internal fault as well, 

which may result in a short circuit and the transformer ceasing to function properly, 

External-fault is the second kind of fault: (lightning strikes systems overloads, short-

circuits).The effect of externals-faults is that occur the outside of transformers that 

cannot generally to avoided or prevents during conventional the maintenances. 

Transformer subject to thing such as the lightning strike or other damages from the 

outsides cannot be prevents. This work designs a catalytic approaches the detection to 

classification the transformer fault at electric power transmission system. The 

differential relay is one of the main protections on the transformers acting on internal 

fault on the transformers such as turns-ground faults and turns-to-turns faults on 

transformer winding. The internals fault of the transformers can be modeled is 

modifying the coupling inductance matrix of transformers. If an internal faults at 

transformer, conductors the inductance matrix will change due to the fault point. This 

new matrix depends on the location the types of faults. Simulation the defectives 

transformers will produce the wrong waveform that can be using to tests correctness 

and sensitivity at differentials protections.  

1.3 Aim of the Thesis 

The subsequent points can review and summarize the aims of this thesis: 

1. Diagnosis the system status, whether in the normal operation or faulted. 

2. Detection the fault will be fast and accurate by using the machine learning 

technique which (MLT) is implemented using MATLAB environment 

3. Classify the type of the fault.  
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1.4 Objectives of the Study 

In order to investigation and to classification, the fault which is internals faults 

protection system at the transformer; it proposed to build the internals faults modeling 

to be simulating using a real fault waveform system. Followings are the objectives 

proposed for this thesis: - 

1. To analyze and verify the model, the results from the no-load test and the load 

loss test from the transformer. The test result can also be to use for model 

analysis and verification. 

2. To diagnose the fault after obtaining accurate information and data from the 

suspects and comparing them with the information available from the database. 

3. To evaluating faults to avoid major faults in the systems powers sources and 

ensure that, transformers does not break down significantly.  

 

1.5 Scope of the Study 

From the above facts, it can be clearly conclude that the current available 

techniques for transformer condition monitoring suffer from some limitations. 

1. The transformer winding modeling done to define and test the proposed 

method is a parameter model. This model   implemented using SIMULINK 

MATLAB. 

2. Certain tests are necessaries detect to the integrity of t windings transformer’s 

away from, it installation in real system. 

3. Some algorithms in identifying and detecting faults in transformers require 

placing sensors or sensitive coils with a sensing property and a high-precision 

sensitivity fault to detect faults in a short circuit of single turn winding. 

4. Using machine learning to develop algorithms that classify faults in electrical 

power transformers using voltage sag measurements.  

 



 

23 

1.6 Significance of the studies 

The purposes of the thesis are to identifying the classify faults at power 

transformers, in orders to decreases risks of the transformers failures and detect them 

before accidents in distribution and electrical transmission stations occur. therefore to 

identify the differentiate fault from the externals fault, several approaches based on 

digital's signals process and the artificial intelligence's technologies are used in the 

Powers transformers need to be protected. The applications of two types of the 

machines learning algorithm, at vector supports machines and the rondes forests, to 

distinguish between both (internals, exterior flaws). 
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