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ABSTRACT 

Since the early 1980s, cardiovascular diseases (CVD) has been the leading 

cause of death and the use of a wearable device to monitor patients could greatly 

impact the disease outcomes on healthcare systems. However, Malaysians still lack 

awareness towards the cardiovascular diseases even although cardiovascular disease 

is the top killer in Malaysia. Cardiovascular disease (CVD) remains the main cause of 

morbidity and mortality in the world and hence early cardiovascular disease detection 

is very crucial so that appropriate treatments and counselling can be done in the early 

stage. Over the past decade, the detection and analysis of biological electrical signals 

from the surface of the skin using non-invasive electrode has shown to be a powerful 

device for the diagnosis of clinical conditions. The wet bioelectrode which is using the 

reticulated gel foam is a universal standard bioelectrode utilized in clinical settings. 

However, in a long-term application, dehydration of the gel can cause the bioelectrode 

to become unstable and troublesome, and hence it can result in severe signal 

attenuation and noise interference. As a result, detection of bioelectrical potentials 

using non-contact method is desired for the long-term recording of heart biopotential 

signals. This work is focusing on designing an integrated front-end CMOS analog 

circuitry that is capable to detect heart electrical signal while achieving low noise 

circuit performance. An electronic interface to be used with multiple contactless 

electrodes has been studied in order to develop a wearable health device that able to 

perform several lead measurements compared to conventional one-lead system. 

Furthermore, the ability of the proposed interface to amplify differential biopotentials 

and to reject common-mode signals produced by electromagnetic interference are 

investigated as well. This work is implemented using Silterra 0.13 µm CMOS 

technology using Cadence computer-aided design tool. From the simulation result, the 

CMOS operational amplifier design achieved the gain of 64.2286 dB and phase margin 

of 83.3°. It also obtained CMRR of 89.9357 dB, PSRR of 71.6896 dB and a lower 

power dissipation of 3.5 µW at the operating frequency range between 0.05 Hz to 250 

Hz. In addition, the complete interface with driven right leg circuit in this project is 

able to achieve gain more than 50 dB at the same operating frequency as well. This 

amplifier output will be eventually connected to other peripherals that will make up a 

whole ECG monitoring wearable health device. 
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ABSTRAK 

Sejak awal 1980-an, penyakit kardiovaskular (CVD) telah menjadi punca 

utama kematian dan penggunaan peranti sedia pakai untuk memantau pesakit boleh 

memberi kesan besar kepada sistem penjagaan kesihatan. Namun, rakyat Malaysia 

masih kurang sedar terhadap penyakit kardiovaskular walaupun jantung berhenti 

seketika secara tiba-tiba merupakan sebab utama kematian di Malaysia. Penyakit 

kardiovaskular (CVD) kekal sebagai punca utama morbiditi dan kematian di dunia dan 

justeru pengesanan awal penyakit kardiovaskular adalah sangat penting supaya 

rawatan dan kaunseling yang sesuai dapat dilakukan pada peringkat awal. Sepanjang 

dekad yang lalu, pengesanan dan analisis isyarat elektrik biologi dari permukaan kulit 

menggunakan elektrod bukan invasif telah terbukti sebagai peranti yang berkuasa 

untuk diagnosis keadaan klinikal. Bioelektrod basah yang menggunakan buih gel 

retikulasi ialah bioelektrod standard universal yang digunakan dalam tetapan klinikal. 

Walau bagaimanapun, dehidrasi gel dalam penggunaan jangka panjang boleh 

menyebabkan bioelektrod tidak stabil dan menyusahkan kerana hal ini boleh 

mengakibatkan pengecilan isyarat biopotensi jantung yang teruk dan gangguan bunyi. 

Akibatnya, pengesanan potensi bioelektrik dengan menggunakan kaedah bukan 

sentuhan mampu untuk rakaman isyarat biopotensi jantung dalam jangka masa yang 

panjang. Dalam projek ini, kerja ini akan memberi tumpuan dalam mereka bentuk litar 

analog CMOS bahagian hadapan bersepadu yang mampu mengesan isyarat elektrik 

jantung sambil mencapai prestasi litar hingar rendah. Antara muka elektronik yang 

akan digunakan dengan berbilang elektrod tanpa sentuh akan dikaji untuk 

membangunkan peranti kesihatan boleh pakai yang mampu melakukan beberapa 

pengukuran plumbum berbanding sistem satu plumbum konvensional. Tambahan 

pula, keupayaan antara muka yang dicadangkan untuk menguatkan biopotensi 

pembezaan dan menolak isyarat mod biasa yang dihasilkan oleh gangguan 

elektromagnet akan disiasat juga. Kerja ini akan dilaksanakan menggunakan teknologi 

Silterra 0.13 µm CMOS dalam rangka kerja reka bentuk bantuan komputer Cadence. 

Pengeluaran yang dijangkakan bagi projek ini ialah penguat isyarat ECG yang direka 

boleh dikuasakan oleh bekalan kuasa kurang daripada 1.2 V, nisbah penolakan mod 

biasa yang tinggi (> 60 dB) dan voltan hingar yang dirujuk input rendah. Daripada 

hasil simulasi, reka bentuk penguat operasi mampu mengarkibkan keuntungan 

sebanyak 64.2286 dB dan margin fasa 83.3°. Ia juga menyediakan CMRR sebanyak 

89.9357 dB, PSRR sebanyak 71.6896 dB dan pelesapan kuasa yang lebih rendah 

sebanyak 3.5 µW pada frekuensi operasi 0.05 Hz hingga 250 Hz pada tahap skematik. 

Selain itu, reka bentuk lengkap dengan reka bentuk litar kaki kanan terdorong dalam 

projek ini mampu mengarkibkan keuntungan lebih daripada 50 dB pada frekuensi 

operasi 0.05 Hz hingga 250 Hz pada tahap skema juga. Pengeluaran penguat ini 

akhirnya akan disambungkan ke peranti lain untuk membentuk keseluruhan peranti 

kesihatan boleh pakai pemantauan ECG. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Since the early 1980s, cardiovascular diseases (CVD) has been the world’s top 

cause of death. According to the research, around 17.9 million deaths worldwide in 

2019 were attributable to CVDs or 32% of all fatalities in the world. Among these 32% 

of deaths, 85% were caused by heart attack and stroke. The majority of CVD deaths 

occur in low and middle-income nations [11]. Ischaemic heart disorders continued to 

be the leading causes of mortality in Malaysia, 17% of the 109,155 medically certified 

deaths in 2020 [12]. However, Malaysians still lack awareness towards the 

cardiovascular diseases even although cardiovascular disease is the top killer in 

Malaysia. In the world now, cardiovascular disease  (CVD) continues to be the leading 

cause of morbidity and mortality and hence cardiovascular disease detection in an early 

stage is very crucial so that appropriate treatments and counselling can be done in the 

early stage. 

In the last ten years, the researchers were interested in wearable device 

technology since this technology could help the CVD patients that need long-term 

heart condition monitoring and thus they do not necessarily have to stay in the hospital. 

In addition, wearable devices have also gained attention and interest from the leading 

industries around the world [9]. At the moment, most of the wearable devices in the 

market are mainly only capable to track and monitor activity parameters such as heart 

rate, distance count, step count and so on. Meanwhile, the latest sensors used in some 

wearable devices are also able to track and monitor physiological parameters relevant 

to CVD, such as blood pressure and oxygen saturation (SpO2).  

Recently, electrocardiogram (ECG) monitoring is setting up to be one of the 

most powerful health-related functions of the advanced wearable devices. The global 
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healthcare systems might be significantly impacted by the usage of a wearable device 

to monitor patients. On the other hand, the wearable devices in the market now can 

only record single-lead ECGs using several dry contact electrodes [9]. This type of 

measurement can be used only for the diagnosis of arrhythmia. Numerous ECG leads 

are needed to diagnose other cardiac disorders. To a certain extent, the accuracy of the 

representation of the heart's electrical activity will be increased when more points are 

recorded through multiple ECG leads [13].  

Traditional 12-lead ECG can detect and capture cardiac voltages on the skin, 

with amplitudes of small voltages and frequencies between 0.01 Hz to 150 Hz. To use 

the traditional 12-lead ECG, the patient is needed to lay on an examination bed for a 

limited time so that the ECG measurement can be performed. The wet bioelectrode 

which is using the reticulated gel foam is a universal standard bioelectrode in 

traditional 12-lead ECG measurement [9]. However, the reticulated gel foam will get 

dehydrated after some time and it can cause the bioelectrode to become unstable and 

troublesome and hence it can cause serious signal attenuation and noise interference. 

Over the last few years, non-contact electrodes have been implemented in several 

research [14]. Investigation of the patient’s body using capacitive electrodes have been 

done as well [15–18]. By implementing the electrodes into portable gadgets etc., it 

may be possible to employ more ECG leads, but marginally compromising patient 

comfort. The best electrodes to be implemented in the portable device are the dry 

capacitive electrodes. As a result, advanced electronic interfaces need be created to 

meet the application requirements in order to employ the capacitive electrodes. High 

impedance on the electronic interface and EMI rejection are the two key criteria of the 

new electronic interfaces. Compared to the previous years, it is undeniably that there 

is a growing trend and demand for more portable medical equipment. It is more 

obvious in the recent time when excitement of the arrival of the internet of things (IoT) 

in the coming future. As a result, it is crucial to design the electronic interface system 

that is capable to detect heart electrical signal using non-contact method through dry 

capacitive electrodes and also fit to be used with the wearable devices. 
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1.2 Problem Statement 

Over the past decade, using non-invasive electrodes in performing the 

detection and analysis of biological electrical signals from the skin surface has proved 

to be a very effective tool for the diagnosis of clinical disorders. However, the 

reticulated gel foam will get dehydrated after some time and it can cause the 

bioelectrode to become unstable and troublesome, and hence it can cause serious signal 

attenuation and noise interference. Dry capacitive electrodes can detect ECG signals 

without using the conductive reticulated gel. Dry electrodes can overcome the 

disadvantages of wet electrodes and provide a stable detection and analysis of cardiac 

signals especially for a long-term application. 

 In recent years, health monitoring in advanced wearable device is rapidly 

increasing. However, health monitoring wearable device that is using sensor will have 

a bigger size and less flexibility to implement more customizations. As a result, a low 

noise and high-performance system design are playing an essential role to accomplish 

a single-chip portable ECG monitoring system in a wearable device. 

1.3 Research Objectives 

The research objectives of the project are: 

a) To design a low noise and high performance CMOS amplifier that is capable 

to detect capacitive heart electrical signal. 

 

b) To develop a fully integrated CMOS front-end interface for multi-lead 

capacitive ECG. 
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1.4 Scope of Research 

In this work, Cadence Virtuoso tool is used to design and simulate the 

operational amplifier based on the design specification of the project. The process 

technology node used for this project is 0.13 µm CMOS standard from Silterra. 

1.5 Thesis Outline 

There are five chapters of contents in this thesis, including introduction, 

literature review, project methodology, result and discussion, and finally a conclusion. 

The first chapter presents the research background, the problem statement, project 

objectives and the scope of the project. 

Chapter 2 covers the non-contact ECG and the ECG amplifier in monitoring 

cardiovascular health. This chapter also discusses the theoretical background of the 

operational amplifiers. In addition, a summary of reviewed research papers by other 

researchers are presented as well.  

 Chapter 3 presents the project methodology and the scheduling of the design 

in project flowchart. Additionally, the reference design topology and the performance 

specifications of the design are shown in this chapter. 

 Chapter 4 discusses about the simulation results obtained after the completion 

of the workflow of the research. Schematic diagram of the circuit design and simulated 

output waveform are presented in this chapter to discuss about the simulation results 

after the simulation is done. 

The last chapter summaries the overall research. Suggestions for further works 

and improvements in the future are discussed in Chapter 5 too. 
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