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ABSTRACT 

Photon detection technology involving single photon detection and counting is 

vital for areas such as biomedical, agriculture, two-dimensional imaging, three-

dimensional ranging and fluorescence correlation spectroscopy. These applications 

require a photon detection system with fast response time and high sensitivity and 

Single Photon Avalanche Diode (SPAD) is identified to be a suitable candidate as a 

photon detector. SPAD provides fast photon counting, low biasing voltage, small in 

size and ability to integrate with Complementary Metal-Oxide Semiconductors 

(CMOS) compared with other photon detection methods. The motivation of this 

project is to achieve physical implementation of 2-Dimensional Array of SPAD with 

intention of improving sensitivity. Previous studies show limitations of SPAD 

application to detect very low intensity photon signals due to insufficient sensitivity. 

This project suggests a robust data acquisition system to work with 16 x 2 photon 

counting array of SPAD detector and its readout controller module. The integrated 

circuit will be implemented in Verilog Hardware Descriptive Language (HDL), 

simulated, synthesized, and tested for Application Specific Integrated Circuit (ASIC) 

implementation using Synopsys Electronic Design Automation (EDA) tool. Besides 

that, an additional task is in place to realize fabrication ready physical implementation 

of the proposed integrated circuit using 0.18 µm CMOS technology. The full design 

consists of 16 x 2 SPAD model, 16 bits 2 to 1 multiplexer, Brent-Kung Adder (BKA) 

as data acquisition system and a Parallel In Parallel Out (PIPO) shift register. 

Verifications are done to each element individually and to whole system to ensure 

functionality correctness. Physical implementation of the whole system is carried out 

to study area and power performance of the post-layout design. The 16 x 2 BKA 

system is able to achieve an area reduction of 20.93 % when taking the 16 x 2 KSA 

system as reference. The maximum main clock frequency and area consumption 

achieved by the 16 x 2 BKA system are 680.3 MHz and 11688.97 µm2 respectively. 
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ABSTRAK 

Teknologi pengesanan foton melibatkan pengesanan dan pengiraan foton 

tunggal mempunyai kepentingan dalam sektor sepert bioperubatan, pertanian, 

pengimejan dua dimensi, pengukuran kejauhan tiga dimensi dan spektroskopi korelasi 

pendarfluor. Aplikasi-aplikasi ini memerlukan sistem pengesanan foton dengan masa 

tindak balas yang cepat dan sensitiviti yang tinggi serta Diod Avalanche Foton 

Tunggal dikenal pasti sebagai pengesan foton yang sesuai. Diod Avalanche Foton 

Tunggal mempunyai ciri-ciri seperti pengiraan foton pantas, voltan pincang yang 

rendah, bersaiz kecil dan keupayaan untuk berintegrasi dengan semikonduktor-oksida 

logam pelengkap berbanding kaedah pengesanan foton lain. Motivasi projek ini adalah 

untuk mencapai pelaksanaan fizikal tatasusunan 2 Dimensi Diod Avalanche Foton 

Tunggal dengan hasrat untuk meningkatkan sensitiviti. Kajian terdahulu menunjukkan 

had aplikasi Diod Avalanche Foton Tunggal untuk mengesan isyarat foton intensiti 

sangat rendah kerana kepekaan yang tidak mencukupi. Projek ini mencadangkan 

sistem pemerolehan data yang teguh untuk berfungsi dengan 16 x 2 foton tatasusunan 

mengira untuk pengesan SPAD dan modul pengawal bacaannya. Litar bersepadu akan 

dilaksanakan dalam Verilog HDL, disimulasikan, disintesis dan diuji untuk 

pelaksanaan ASIC menggunakan alat Automasi Reka Bentuk Elektronik Synopsys. Di 

samping itu, tugas tambahan dilakukan untuk merealisasikan fabrikasi siap 

pelaksanaan fizikal litar bersepadu yang dicadangkan menggunakan teknologi CMOS 

0.18 µm.  Reka bentuk penuh terdiri daripada model 16 x 2 Diod Avalanche Foton 

Tunggal, 16 bit 2 hingga 1 pemultipleks, Penambah Brent-Kung sebagai sistem 

pemerolehan data dan daftar anjakan selari keluar. Pengesahan dilakukan kepada 

setiap elemen secara individu dan keseluruhan sistem untuk memastikan ketepatan 

fungsi. Pelaksanaan fizikal keseluruhan sistem telah dijalankan untuk mengkaji 

kawasan dan prestasi kuasa reka bentuk pasca susun atur. Sistem 16 x 2 BKA mampu 

mencapai pengurangan kawasan sebanyak 20.93 % apabila mengambil sistem 16 x 2 

KSA sebagai rujukan.  Frekuensi operasi maksimum dan penggunaan kawasan yang 

dicapai oleh sistem 16 x 2 BKA ialah 680.3 MHz dan 11688.97 µm2. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The background of the project, problem statement, objectives, scopes of project 

and significance of the project will be presented and discussed in this chapter.  

1.2 Problem Background 

Quantum photonic is one of the focused research as this field of study is 

beneficial to multiple domains such as biomedical, agriculture, 2D imaging, 3D 

ranging and fluorescence correlation spectroscopy. Generation, manipulation and 

detection of the photon quantum states are generic stages of process for a typical 

quantum photonic system [1]. There are types of single photon detectors such as 

Superconducting Nanowire Single Photon Detector (SNSPD) [2], Transition Edge 

Sensor (TES) [3] and Single Photon Avalanche Diode (SPAD) [4]. SPAD is the most 

suitable photon detection methodology for either experimental setup or portable 

solution due to its’ ability to operate under room temperature condition while the other 

two methods will require extremely low working temperature from 1 K to 4 K [2,3]. 

SPAD also possesses benefits such as efficient photon detection, low operating voltage 

and ability to be implemented into array form [5]. For the observability of the photons 

detected by a SPAD array, a data acquisition system is required. 

SPAD is one of the photon detection methodologies in quantum photonic with 

advantages such as integrability into Application Specific Integrated Circuit (ASIC), 

small size, low power consumption due to lower operating voltage and ability in 

detecting low intensity photons [6]. SPAD, also known as Geiger mode avalanche 

photodiode, is built from a PN junction structure which operates under reverse biased 
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voltage that exceeds breakdown voltage [7]. When SPAD is operating in reverse 

voltage higher than breakdown voltage, there is no current flow due to the depletion 

region missing free carriers. Any photon absorbed in this moment will result in 

avalanche current from ionisation which indicates the photon is detected and a 

quenching circuit will reset the avalanche current by lowering the reverse voltage. 

The implication of SPAD into a 16x1 array is presented by Suhaila et al in 

enabling the possibility for imaging purpose [8]. A data acquisition system will be 

required to make the photons detected by SPAD array countable and observable. A 

complete parallel photon counting circuit will consist of two main portions which are 

the front end part, SPAD array that detects asynchronous photon signals and the 

backend part, a synchronous data acquisition system  [9] [10]. A backend data 

acquisition system with 4 main blocks which are pulse discriminator, clock divider, 

Parallel In Serial Out (PISO) register and Kogge Stone Adder (KSA) is proposed by 

Kumar [11]. 

The adder portion which carries out photon counting operations is the 

bottleneck of the data acquisition system which determines the operating frequency 

[12]. KSA which is a kind of Parallel Prefix Adder (PPA) was used as counting 

element in previous implementation due to PPA is having lowest latency compared 

with other adder topologies such as Ripple Carry Adder (RCA), Carry Save Adder 

(CSA) and Carry Select Adder [13]. The drawback of KSA will be contribution to 

large cell area consumption and Brent-Kung Adder (BKA) is showing possibility to 

replace KSA with the advantage of simplifying complexity of the circuit and leads to 

area reduction in post physical implementation layout as it is showing saving of 41 % 

area saving with 22.26 % longer latency [14]. With the latency of 0.7 ns achieved by 

KSA data acquisition system [15], the degradation in delay of the counter portion is 

estimated to be able to achieve the requirement of the SPAD array used which is 200 

MHz.  

ASIC are integrated circuits designed for a specific purpose or function [16]. 

By implementing the data acquisition system with ASIC, the design can benefit from 

power consumption and delay performance compared with Field Programmable Gate 
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Arrays (FPGA). Implementation with standard cell methodology of ASIC will speed 

up the design process due to easier convergence of the design’s timing and Design 

Rule Check (DRC) of the technology process used. 

1.3 Problem Statement 

Large area consumption of data acquisition systems with usage of KSA as a 

photon counting element is being reported by previous research [17] which requires 

improvement. Area overhead is an important design constraint which determines the 

design's cost and functionality that is allowed to be implemented within the design. 

This project will look for a type of adder that possesses lower area overhead and 

comparable delay to substitute KSA as a counting element. 

 

 The finding from previous research by J.W Tai [18] is showing that the 16 x 1 

SPAD array is having limitations in sensitivity for photon counting where 16 x 2 SPAD 

is proposed to improve the sensitivity but there is an existing flaw in the proposed 

solution where the sensitivity is not improved successfully. Optimization will be done 

by this project to complete the solution proposed by the previous project and achieve 

the target of improving sensitivity. 

  

 Besides that, physical implementation of the data acquisition system for the 

SPAD module is needed due to low implementation cost and low power consumption. 

ASIC is more cost efficient in large scale fabrication and the power consumption of 

ASIC can be well optimised and controlled more precisely. Lower power consumption 

will be translated into longer battery life for portable solutions. 

1.4 Objectives 

The main purpose of this project is to carry out physical implementation of a 

data acquisition system with BKA for a 16 x 2 SPAD photon counting array with 

technology process of 0.18 µm Complementary Metal-Oxide Semiconductor (CMOS). 
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The applicable performance metrics such as timing convergence, area consumption 

and power consumption of pre and post layout design will be extracted and evaluated.  

Here are the objectives of this project: 

• To design 16 x 2 photon counting array front-end circuit with data acquisition 

system on-chip.  

• To integrate the proposed 16 × 2 photon counting array for fabrication ready 

physical implementation using 0.18 µm CMOS technology. 

• To reduce area consumption by using 16-bits BKA. 

• To characterise the proposed circuit for timing, power and area performances. 

1.5 Scopes of Project 

The scopes of the project are:  

• Specification of APD in [9] have been used. 

• Register Transfer Level (RTL) is designed in Verilog Hardware Descriptive 

Language (HDL) form. 

• Optimization is done on the acquisition system adder portion proposed by J.W 

Tai. 

• Random signal generation module is included to simulate photon signal 

captured by SPAD module. 

• Quartus is used to verify the functionality of the blocks in the data acquisition 

circuit with Verilog HDL form with testbench. 

• Design Compiler (DC) is used to translate Verilog HDL into gate-level netlist. 
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• IC Compiler (ICC) is used to carry out physical implementation. 

• Analyse the floorplan size, timing and power consumption of the ASIC design. 

• The physical implementation and performance metrics analysis are 

implemented on 16 x 1 KSA, 16 x 2 KSA and 16 x 2 BKA based systems. 

1.6 Significance of Project 

This project is going to contribute to photon detection of the quantum photonic 

field. Improvement in sensitivity of the SPAD application translates into more photon 

counts per second and more precise results from photon counting are expected to be 

contributed by this project. Besides that, the effort of this project in reducing the area 

consumption for the data acquisition system of the SPAD module will contribute to 

the possibility of incorporating more features for the system and suitable for portable 

solutions in applications such as agriculture and biomedical field. Reduction of the 

area consumption with usage of BKA also gives more area of utilisation for further 

development such as introducing Build-In-Self-Test (BIST).  

1.7 Report Organisation 

This project proposal is made up from five chapters. This chapter provides an 

introduction on the research topic of this project, explanation of the problem 

background which motivates this research, problem statement, objectives of the 

research, project scope and the overall organisation of this report. Chapter two 

elaborates the literature review done on the data acquisition system and the adder 

comparison in identifying the problem statement. Chapter three displays the 

methodology of implementing the 16 x 2 data acquisition system with BKA from RTL 

to physical layout. Chapter four will present the experimental data and discussion on 

the findings of the 16 x 1 KSA, 16 x 2 KSA and 16 x 2 BKA systems in various 

performance metrics during synthesis, place and route and Static Timing Analysis 
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(STA). The project management plan will be explained in this chapter as well. Chapter 

five will summarise the findings obtained from the project outcome and then explain 

the limitation and future improvement for this project. 
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