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ABSTRACT 

As MOSFETs already reached the limitation in terms of physical and electrical 

characteristic which is difficult to continue producing with MOSFET due to the level 

of difficulty and complexity. Although, FinFETs provide several advantages but there 

are some drawbacks of FinFETs such as higher fabrication cost, difficult to control 

dynamic threshold voltage etc. Therefore, JL FinFETs has been proposed to overcome 

the shortcoming. The main difference of FinFETs and JL FinFETs is the presence of 

junctions and gradient of doping concentration between source and drain. Therefore, 

JL FinFETs offers higher scalability with lower cost, higher compatibility and 

additional design parameters like substrate doping concentration. In recent, reliability 

of device has become one of the major concerns when scaling to nano regime. There 

are many works on reliability studies have been done includes Negative Bias 

Temperature Instability (NBTI), Hot Carrier Injection (HCI), Time Dependent 

Dielectric Breakdown (TDDB) that occurs in MOSFETs. However, the information 

regarding reliability issue for JL FinFETs is very limited. Therefore, the reliability 

issue of JL FinFETs become a primary concern and should be investigated. This 

project mainly discussed about TDDB including type of physical model, typical 

behavior, constant stress test. The aims of project are to design and simulate the 15nm 

JL FinFETs device structure and TDDB test applications. Synopsys Sentaurus TCAD 

will be used for the simulation purpose. The design parameter for n-channel JL 

FinFETs using 15nm as the gate length, and 10nm for width and height of the fin. 

Then, TDDB test with Constant Voltage Stress (CVS) method will be carried out by 

for approx. 10 years with 3 different stresses applied to analyze the threshold voltage 

shift of 15nm JL FinFETs before and after the stress applications for long-term 

reliability of the oxide. The stress voltage was determined as 0.9V, 1.35V and 1.8V. 

Besides, the test will be carried out with several oxide thickness such as 1nm, 2.5nm, 

4nm, 6nm and 10nm with numerous types of oxide material like SiO2, HfO2 and Si3N4. 

According to the experimental result, JL FinFETs with the combination of Si3N4 

provide the greatest time to failure compared to SiO2 and HfO2 with the highest range 

in threshold voltage shift which is 2.17% - 8.43%.   
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ABSTRAK 

Memandangkan MOSFET telah mencapai had dari segi ciri fizikal dan elektrik 

yang sukar untuk terus dihasilkan kerana tahap kesukaran dan kerumitan. Walaupun, 

FinFET memberikan beberapa kelebihan tetapi terdapat beberapa kelemahan FinFET 

seperti kos fabrikasi yang tinggi, sukar untuk mengawal voltan ambang dinamik. Oleh 

itu, JL FinFET telah dicadangkan untuk mengatasi kekurangan tersebut. Perbezaan 

utama FinFET dan JL FinFET ialah kehadiran simpang dan kecerunan kepekatan 

doping antara sumber dan longkang. Oleh itu, JL FinFET menawarkan kebolehskalaan 

yang tinggi dengan kos yang rendah, keserasian yang lebih tinggi dan parameter reka 

bentuk seperti kepekatan doping substrat. Kebolehpercayaan peranti telah menjadi 

salah satu kebimbangan utama apabila menskalakan kepada rejim nano. Terdapat 

banyak kerja kajian kebolehpercayaan telah dilakukan termasuklah Ketidakstabilan 

Suhu Bias Negatif (NBTI), Suntikan Pembawa Panas (HCI), Pecahan Dielektrik 

Bergantung Masa (TDDB) yang berlaku dalam MOSFET. Walau bagaimanapun, 

maklumat mengenai isu kebolehpercayaan untuk JL FinFET adalah sangat terhad. 

Oleh itu, isu kebolehpercayaan JL FinFET menjadi kebimbangan utama dan harus 

disiasat. Projek ini terutamanya membincangkan TDDB termasuk jenis model fizikal, 

tingkah laku biasa, ujian tekanan berterusan. Matlamat projek adalah untuk mereka 

bentuk dan mensimulasikan struktur JL FinFETs 15nm dengan TDDB. Synopsys 

Sentaurus TCAD akan digunakan untuk tujuan simulasi. Parameter reka bentuk untuk 

JL FinFET saluran-n menggunakan 15nm sebagai panjang pintu, dan 10nm untuk lebar 

dan ketinggian sirip. Kemudian, TDDB dengan kaedah Tegasan Voltan Malar (CVS) 

akan dijalankan selama lebih kurang. 10 tahun dengan 3 voltan tekanan berbeza 

digunakan untuk menganalisis anjakan voltan ambang 15nm JL FinFET sebelum dan 

selepas aplikasi tegasan untuk kebolehpercayaan jangka panjang oksida. Voltan 

tekanan ditentukan sebagai 0.9V, 1.35V dan 1.8V. Selain itu, ujian akan dijalankan 

dengan beberapa ketebalan oksida seperti 1nm, 2.5nm, 4nm, 6nm dan 10nm dengan 

pelbagai jenis bahan oksida seperti SiO2, HfO2 dan Si3N4. Mengikut keputusan 

eksperimen, JL FinFET dengan gabungan Si3N4 memberikan masa yang paling 

panjang untuk kegagalan berbanding dengan SiO2 dan HfO2 dengan julat tertinggi 

dalam anjakan voltan ambang iaitu 2.17% - 8.43%.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Problem Background 

FinFETs also known as Tri-Gate transistor and multi-gate transistor. It has designed 

to overcome the bottleneck in terms of increasing the number or transistor density and 

performance of planar MOSFET. Although, FinFETs provide several advantages like 

superior performance in terms of lower power consumption, lower leakage current, better 

Drain Induced Barrier Lowering (DIBL), suppressed short-channel effect (SCE) and others. 

There are some drawbacks of FinFETs such as higher fabrication cost, difficult to control 

dynamic threshold voltage, higher capacitance, corner effect etc. Therefore, JL FinFETs 

has been proposed to overcome the shortcoming such as fabrication cost, higher scalability, 

higher compatibility, lower degradation of mobility with gate voltage and more.  

 

1.2 Problem Statement  

In recent, reliability of device has become one of the major concerns when scaling 

to nano regime. Therefore, there are many research papers regarding reliability issue such 

as electromigration (EM), Negative Bias Temperature Instability (NBTI), Hot Carrier 

Injection (HCI), Time-dependent Dielectric Breakdown (TDDB) that occurs in MOS 

structure device can be easily found from internet source [1]. However, the researcher paper 

and information regarding reliability issue for JL FinFETs is very limited. This happens 

due to JL FinFETs can be considered as type of new technology at this moment. Also, a 

thinner gate dielectric which is lesser than 10nm with aggressive scaling down of the device 

geometries will affect the long-term reliability and integrity of the oxide layer.  Therefore, 

the reliability issue of JL FinFETs become a primary concern and should be investigated.  
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1.3 Research Goal 

This project aims to design and simulate a 15nm n-channel JL FinFETs device 

structure with TDDB test applications. TDDB test will be carried out with Constant Voltage 

Stress (CVS) varies with stress time and understand the degradation of the electrical 

characteristic of the proposed device before and after VS applications to the gate. will be 

designed and simulated by using Synopsys Sentaurus TCAD.  

1.3.1 Research Objectives 

The objectives of the research are: 

(1) To design a device structure for 15nm n-channel JL FinFETs  

(2) To study TBDD reliability issues of 15nm n-channel JL FinFETs including the 

typical behaviour, type of stress etc.  

(3) To analyze the threshold voltage shift after stress application of 15nm n-channel 

JL FinFETs for different oxide thickness and different oxide material.   

1.4 Scope of Works 

The scope of the research are: 

(1) The best optimized design structure for n-channel JL FinFETs using 15nm as 

the gate length, and 10nm for width and height of the fin.  

(2) TDDB test will be applied to the designed JL FinFETs by using CVS for approx.  

10 years in order to predict the functionality of device. 

(3) TDDB will be carried out by applying CVS method to the designed 15nm n-

channel JL FinFETs for 1nm, 2.5nm, 4nm, 6nm and 10nm with several type of 

material such as SiO2, HfO2 and Si3N4.   
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(4) Characterize the performance of electrical properties for 15nm n-channel JL 

FinFETs before vs after the stress application 

(5) Synopsys Sentaurus TCAD Simulation will be used to simulate the reliability 

test and the performance will be investigated based on the I-V characteristic, 

leakage current with stress time etc.  

1.5 Report Structure  

The structure of the report will be organized into several chapters which are Chapter 

2: Literature Review discuss about the device structure of FinFETs, JL FinFETs, common 

reliability issue including the fundamental knowledge about TDDB. Besides, Chapter 3: 

Research Methodology describe the design, model, parameters, and project flow by using 

Synopsys Sentaurus TCAD Tools Simulation. Also, Chapter 4: Result and discussion 

which demonstrate concept for the entire project. Lastly, Chapter 5 will be the conclusion 

of the project including the future work and recommendation where the reference list and 

appendixes will be attached at the end of project.   
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