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ABSTRACT 

In recent years, artificial intelligence (AI) plays an important role in Very 

Large-Scale Integration (VLSI) circuit design for wirelength prediction of cell 

placement. As compared to conventional wirelength estimation techniques such as 

Half-Perimeter Wirelength (HPWL) and Rectilinear Steiner Minimal Tree (RSMT), 

wirelength prediction using AI does provide the results with higher accuracy within a 

shorter runtime. Therefore, this paper aims to implement and investigate the 

performance of several machine learning-based wirelength estimation models on the 

International Symposium on Physical Design (ISPD) 2011 circuit benchmark. 

Machine learning models such as Artificial Neural Network (ANN), Support Vector 

Machine (SVM) and Random Forest (RF), are introduced in this paper. Besides, this 

paper also targets to integrate the machine learning model with the best accuracy and 

runtime, into actual placement. The results indicate that RF is the best choice for 

replacement of conventional method as RF achieved an accuracy of more than 90% 

for wirelength estimation, and the runtime taken by RF is approximately 10000s much 

faster than RSMT. 
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ABSTRAK 

Pada era globalisasi ini, kecerdasan buatan (AI) memainkan peranan penting 

dalam reka bentuk litar penyepaduan skala sangat besar (VLSI) untuk kegunaan 

penganggaran panjang wayar dalam prosedur penempatan sel. Berbanding dengan 

teknik penganggaran panjang wayar konvensional seperti Half-Perimeter Wirelength 

(HPWL) dan Rectilinear Steiner Minimal Tree (RSMT), penganggaran panjang wayar 

melalui AI boleh menghasilkan keputusan dengan ketepatan yang lebih tinggi dalam 

masa yang singkat. Oleh itu, kajian ini bertujuan untuk melaksana dan menyiasat 

prestasi beberapa model anggaran panjang wayar berasaskan pembelajaran mesin pada 

penanda aras litar International Symposium on Physical Design (ISPD) 2011. Model 

pembelajaran mesin seperti Rangkaian Neural Buatan (ANN), Mesin Vektor 

Sokongan (SVM) dan Random Forest (RF), diperkenalkan dalam kajian ini. Selain itu, 

kajian ini juga bertujuan untuk menyepadu model pembelajaran mesin dengan 

ketepatan terbaik dalam masa yang singkat ke dalam penempatan sel. Keputusan 

kajian ini menunjukkan bahawa RF adalah pilihan terbaik sebagai penggantian kaedah 

konvensional kerana RF telah mencapai ketepatan yang lebih daripada 90% bagi 

penganggaran panjang wayar, dan masa operasi diguna oleh RF adalah agak 10000 

saat lebih pantas daripada RSMT.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The design and optimization of integrated circuits (IC) are essential to the 

manufacturing of semiconductor chips. Recent advances in semiconductor 

technologies does make the modern Very-Large Scale Integration (VLSI) design 

becomes more complex and sophisticated. VLSI physical design continues as one of 

the appealing and arduous areas in the field of Electronic Design Automation (EDA) 

[1]. The main processes included in VLSI physical design are netlist synthesis, 

partitioning, floorplanning, placement, routing, and timing closure. In this paper, VLSI 

cell placement will be mainly discussed. 

VLSI cell placement is a crucial stage in determining the positions and 

orientations of each cell in a layout while also addressing optimization objectives [2]. 

Placement is a stage in VLSI design flow where cell locations are identified which 

affects the timing, routability, power consumption and performance of an IC [3]. The 

conventional VLSI standard cell placement are divided into three main stages, which 

are global placement, legalization, and detailed placement. In general, global 

placement generates an initial placement with minimum total Half-Perimeter 

Wirelength (HPWL) and tries to hit some optimization targets such as routability, 

timing and so on. Few cells overlap as a result, and the cells are not aligned with the 

rows. Next, legalization starts to remove unwanted cell overlaps, to put all cell 

instances on the rows in the core area, and to reduce the displacements of cell instances 

between initial and legalized placements. Lastly, detailed placement is applied in order 

to enhance the quality of the results of legalized placement [3]. 

The main objective of placement optimization is to estimate the coordinates of 

all cells of a given netlist so that the total wirelength of the netlist can be minimised 
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[4]. Reduction of total wirelength of a circuit is a must in VLSI design flow, because 

the total wirelength does affect the maximum clock frequency, power consumption, 

routability, and the cost of manufacturing for a given design [5]. With the less 

wirelength and routing demand, routability can be improved in a design. Plus, the 

performance of the circuits can be better with shorter wirelength since shorter 

wirelength has less delays of interconnects, and a shorter wirelength also introduces 

less capacitive loads [6]. 

As the rapid evolution of the industrial technologies, some requirements on 

improving the techniques for VLSI cell placement are needed in order to reduce the 

computational power and runtime. In recent years, Artificial Intelligence (AI) is seen 

as the alternative replacement for parts of conventional VLSI physical design flow. AI 

is the processing of human intelligence by computers, particularly computer systems. 

This includes learning, reasoning, and self-correction. [7]. There are abundant of AI 

models or algorithms used in the industry nowadays, which can be classified into three 

main classes, which are deep learning, machine learning and neural network.  

As a subset of AI, machine learning is a class of algorithm that automatically 

extract information from datasets or prior knowledge. As a data-driven strategy, 

machine learning is a supplement to analytical models that are widely used in EDA 

tools for VLSI physical design [8]. In this paper, several machine learning algorithms 

will be mainly discussed as the replacement of the conventional method in VLSI 

standard cell placement. 

1.2 Problem Statement 

Finding non-overlapping row and site aligned positions for cells while 

minimising the design’s total wirelength is the challenge of standard cell placement 

[5]. In recent years, there are several wirelength estimation techniques been adopted 

in the semiconductor industries as the cell placement algorithm used in VLSI physical 

design of an IC. Popular algorithms used in the industries are HPWL model, 

Rectilinear Minimum Spanning Tree (RMST) model, Rectilinear Steiner Minimum 
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Tree (RSMT) model and so on. Some pros and cons are observed when these 

algorithms are used in standard cell placement. 

HPWL model is the most popular choice as the wirelength reduction algorithm 

in standard cell placement nowadays in the industry. HPWL is computationally easy 

and thus a shorter runtime is required when estimating the total wirelength of the 

design. However, HPWL does make accurate and precise wirelength estimation for 

smaller netlists. When the size of the netlists grows larger, the accuracy of the 

wirelength estimation drops drastically when HPWL is used, although simple 

computation and less runtime are taken [5].  

In contrast, RSMT does provide a much accurate wirelength estimation than 

HPWL model. RSMT is a Non-Deterministic polynomial (NP) model, which is 

computationally complex and requires a high runtime complexity [6], [9]. As the size 

of the design increases, more runtime is needed for the NP-complete RSMT model, in 

order to obtain the accurate estimation. In practice, RMST is preferred to be used 

instead of RSMT, but the estimated wirelength of RMST is much longer than that of 

RSMT since Steiner node is not allowed in RMST model [6]. Besides, the quality of 

floorplan is mainly dependent on the total wirelength in cell placement design. Thus, 

if the total wirelength is predicted inaccurately, the quality of the floorplan will be 

affected too. 

As the rapid growth of the technology, AI has been introduced as one of the 

main solutions in replacing the conventional wirelength estimation techniques in 

standard cell placement, in order to overcome the issues faced when conventional 

techniques are used. In this paper, several machine learning algorithms such as 

Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random 

Forest (RF) regression, are introduced as the replacements of the conventional 

techniques in VLSI standard cell placement. 



 

4 

 

1.3 Research Objectives 

The objectives of this paper are: 

(a) To develop machine learning algorithms for wirelength estimation. 

(b) To evaluate, analyse and compare different wirelength estimation techniques 

which include both conventional and machine learning methods. 

(c) To integrate machine learning wirelength estimation into actual placement 

algorithm. 

 

1.4 Research Scope 

The scope of this paper includes the development, evaluation, and comparison 

between conventional cell placement algorithms, which are HPWL, RMST and RSMT 

models, and machine learning-based wirelength estimation algorithms. 

Besides, the results from the machine learning-based model with the best 

optimum accuracy and runtime are tested with actual placement, with Simulated 

Annealing (SA) algorithm is applied to investigate the quality of the placed floorplan. 

Python programming language is preferred to be used for implementing the algorithms 

in this paper. The International Symposium on Physical Design (ISPD) 2011 

Routability-Driven Placement Contest and Benchmark Suite is imported as the 

placement circuits used in this paper. 
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1.5 Thesis Outline 

Introduction, Literature Review, Methodology, Result and Discussion and 

Conclusion are the five main chapters that make up this paper. Introduction is the first 

chapter of this paper which describes about the research background, problem 

statement, research objectives, scope of research and the thesis outline. 

The following chapter discusses about the literature review of previous works 

that related to this research. Some of the theoretical background of the research and 

the techniques of using both conventional and machine learning techniques are mainly 

discussed. 

Chapter 3 shares the methodology of the research. The workflow of the 

research will be discussed step by step in detail. Flowcharts and the functions of 

algorithm used are highlighted in this chapter. 

The next chapter discusses about the results obtained after the completion of 

the workflow of the research. Graphs are presented in this chapter to discuss about the 

performances of both conventional and machine learning approaches after estimations 

are done. 

The last chapter summaries the overall research. Suggestions for further 

improvements in the future are discussed in this chapter too.
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