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ABSTRACT 

The evolution of transistor for many device applications have been following 

the Moore’s Law prediction. The downsizing of transistor to meet design specification 

may lead to numerous issues related to short channel effect such as leakage current, 

tunnel effect and increase in power dissipation. To mitigate these issues, nanomaterial 

is proposed to replace silicon as one of the potential solution. Graphene is an 

alternative material with its high mobility and high thermal conductivity. Nanoribbon 

is etched in graphene to convert its metal properties to semiconductor. In this research, 

differential amplifier is constructed based on graphene device. The performance of 

graphene based differential amplifier is then compared with silicon-based material for 

L=32nm. This study used HSPICE for circuit construction and simulation with 

established graphene nanoribbon SPICE model. Current mirror concept is applied at 

load of differential amplifier. The number of ribbons is set as 6 and graphene dimer 

line, N is varied to evaluate performance in term of differential mode gain, common 

mode gain and CMRR.  From simulation result, the highest differential mode gain is 

2.59 at N=19 and the lowest common mode gain is 0.12 at N=9. GNRFET based 

differential amplifier has the best performance with highest CMRR of 18.05 at N=19. 

While comparing with Si-MOSFET based differential amplifier, GNRFET based 

differential amplifier is 11.16% higher in differential mode gain, 39.13% lower in 

common mode gain and 82.14% higher in CMRR. Hence, GNRFET based differential 

amplifier is 82.14% better performance than Si-MOSFET based differential amplifier. 

The outcome of this study can be guideline for future study on circuit implementation 

using graphene material. 
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ABSTRAK 

Evolusi transistor untuk banyak aplikasi peranti telah mengikuti ramalan 

Undang-undang Moore. Pengurangan saiz transistor untuk memenuhi spesifikasi reka 

bentuk boleh menyebabkan banyak masalah yang berkaitan dengan kesan saluran 

pendek seperti arus kebocoran, kesan terowong dan peningkatan pelesapan kuasa. 

Untuk mengurangkan masalah ini, nanomaterial dicadangkan untuk menggantikan 

silikon sebagai salah satu penyelesaian yang berpotensi. Graphene adalah bahan 

alternatif dengan mobiliti yang tinggi dan kekonduksian terma yang tinggi. 

Nanoribbon terukir di graphene untuk menukar sifat logam menjadi semikonduktor. 

Dalam penyelidikan ini, penguat pembezaan dibina berdasarkan peranti graphene. 

Prestasi penguat pembezaan berasaskan graphene kemudian dibandingkan dengan 

bahan berasaskan silikon dalam L = 32nm. Kajian ini menggunakan HSPICE untuk 

pembinaan litar dan simulasi dengan graphene nanoribbon SPICE model. Konsep 

cermin semasa digunakan pada beban penguat pembezaan. Bilangan pita ditetapkan 

sebagai 6 and garis dimer, N diubah untuk menilai prestasi dari segi keuntungan mod 

pembezaan, keuntungan mod biasa dan CMRR.  Dari hasil simulasi, keuntungan mod 

pembezaan tertinggi adalah 2.59 pada N = 19 dan keuntungan mod biasa terendah 

adalah 0.12 pada N = 9. Penguat pembezaan berasaskan GNRFET mempunyai prestasi 

terbaik dengan CMRR tertinggi adalah 18.05 pada N = 19. Semasa membandingkan 

dengan penguat pembezaan berasaskan Si-MOSFET, penguat pembezaan berasaskan 

GNRFET adalah 11.16% lebih tinggi dalam keuntungan mod pembezaan, 39.13% 

lebih rendah dalam keuntungan mod biasa dan 82.14% lebih tinggi dalam CMRR. 

Oleh itu, penguat pembezaan berasaskan GNRFET mempunyai prestasi yang 82.14% 

lebih baik daripada penguat pembezaan berasaskan Si-MOSFET. Hasil kajian ini dapat 

menjadi panduan untuk kajian masa depan mengenai pelaksanaan litar menggunakan 

bahan graphene. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Moore’s Law was introduced by Gordon Moore in 1965 from his observation 

on the development of semiconductor industry. Moore’s Law states that the number of 

transistors in an integrated circuit (IC) was doubled for every two years. Moore’s Law 

is further amended to show the actual growth of transistor density in an IC. The period 

for doubling number of transistors in an IC has been reduced from two years to 

eighteen months [1]. Moore’s Law has accelerated the development of semiconductor 

industry. To match Moore’s Law, the size of transistors had been decreased to increase 

the numbers of transistors which can be placed in an IC and further increased the 

number of ICs which can fabricate in a silicon wafer. However, complexity in scaling 

down the size of transistor slows down Moore’s Law and hinders semiconductor 

industry’s technology development. Figure 1.1 shows Moore’s Law diagram for the 

increasing in transistor number of Intel processors before 2010 [2]. 

 

Figure 1.1 Moore’s Law diagram [2]. 
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Big data technology is the future trend in semiconductor industry. The Moore’s 

scaling technology brings disadvantages in power and interconnect bandwidth which 

can be big challenge for big data and instant data technology field. Instant data requires 

ultra-low power devices with “always on” and high-performance devices to generate 

the data instantly. Abundant computing, communication bandwidth and memory 

resources are the requirement for big data field to generate the service and information 

for clients [3]. In International Roadmap Device and System (IRDS), CMOS scaling 

technology with reducing in power and cost at the same time is a challenge in More 

Moore roadmap. 

Besides, CMOS scaling technology will reach its fundamental limit. Hence, 

new information processing devices and microarchitectures will explore and further 

improve the IC scaling technology. In IRDS Beyond CMOS roadmap, five difficult 

challenges are listed and one of them are extending CMOS scaling. The solution 

provided to face this challenge is by developing new materials to replace silicon such 

as Ge and carbon group as alternative channel which can increase saturation velocity 

and further reduce voltage supply, Vdd and power dissipation in MOSFET and hence 

reduce current leakage [3]. Figure 1.2 shows the relationship of More Moore, Beyond 

CMOS and Novel Computing Paradigms and Application [3]. 

 

Figure 1.2 Relationship of More Moore, Beyond CMOS and Novel Computing 

Paradigms and Application [3]. 
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1.2 Problem Statement 

From Moore’s Law, the number of transistors in an IC is doubled over two 

years. The size of transistors must be as small as possible to match Moore’s Law over 

year. However, CMOS scaling technology has reached its limitation which brings 

many issues. The downsizing of transistor’s channel length to match Moore’s Law 

brings side effect to the performance of MOSFET such as tunnel effects, increasing in 

leakage current, increasing in power dissipation and reducing in carrier saturation 

velocity. To overcome these issues, nanomaterials such as graphene is an alternative 

material. Graphene has been studied for several applications such as full adder, half 

adder, logic gate, encoder, and ADC. 

There is much research have been done on differential amplifier [19] to [25]. 

Researchers concluded that CMRR must be high to reject environment noise signal 

and hence improve the performance of differential amplifier. However, little study has 

attempted to used graphene for differential amplifier application. Therefore, graphene-

based transistor is proposed to construct differential amplifier in this study. It is 

important to achieve high CMRR since it makes sure the common mode signal or noise 

is rejected and output voltage is amplified by the differential pair input voltage. The 

outcome can be compared with carbon nanotube (CNT) to fully exploited graphene 

potential. 

1.3 Research Objective 

This study aimed to analyze the performance of new material which is GNR 

for differential amplifier in term of CMRR and gains. In short, the research embarked 

on the following objectives: 

1. To study the performance of GNR based differential amplifier in terms of 

Common Mode Rejection Ratio (CMRR) and voltage. 
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2. To investigate the effect of varying GNR dimer line with CMRR and voltage 

gain. 

3. To compare the CMRR of GNR based differential amplifier with Silicon based 

at 32nm technology nodes. 

1.4 Research Scope 

Based on the research objectives, the scope of this thesis work is listed below: 

• The design and simulation are using HSPICE tool. 

• The GNR SPICE model is adopted from Ying Yu Chen, et al. [4]. 

• The performance of the differential amplifier is focused on CMRR and voltage 

gains. 

• The netlist file for Si MOSFET transistor at 32nm technology node is adopted 

from PTM model [5]. 

• The dimer line of the GNR is from 8 to 20. 

1.5 Dissertation Outline 

This dissertation is divided into five parts which are Introduction, Literature 

Review, Methodology, Result and Discussion and Conclusion. The first chapter is 

Introduction which discusses about research background, problem statement, research 

objectives, research scopes and dissertation outline. 

Second chapter is Literature Review which discusses about the previous work 

that related to the research. In this chapter, the review on differential amplifier, 

GNRFET application and related work are discussed. 



 

 

5 

 

 

Next chapter discusses the methodology of research. The workflow is 

discussed and the step to carry out in the research is described. Parameters of GNRFET 

used to build differential amplifier are tabulated in table. 

Chapter 4 is results and discussions which shares the simulation result of 

differential amplifier. The performance analysis of GNRFET based differential 

amplifier is carried out in term of CMRR and voltage gains with varying parameters 

of GNRFET which is dimer line. The performance of differential amplifier is 

compared between GNRFET based and Si-MOSFET based in this chapter too. 

The last chapter summarize the overall research that have been done. This 

include some suggestions on further improvement that can be made. 
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