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ABSTRACT 

The purpose of this study is to enhance the conventional power distribution 

system’s resiliency via critical loads survival metric. A two-stage framework is 

proposed for this project, where each stage uses a different tool. In stage 1, the viability 

of using Hybrid Optimization of Multiple Energy Resources (HOMER) Grid software 

is explored to model a resilience and economic hybrid microgrid (MG) in Malaysia 

environment and subsequently the optimal distributed generation (DG) sizing is 

determined. The modeled MG that consists of Renewable Energy System (RES) and 

Energy Storage System (ESS) contributes to lowering the total net preset cost (NPC), 

levelized cost of energy (COE), as well as the carbon emissions. In stage 2, power flow 

study is performed by using Power World software. Optimal DG placement and 

switching strategy are applied together with the optimal DG size, to see the 

effectiveness compared to a benchmark system. IEEE 33-bus test system model is used 

to validate the proposed strategy. The resilience improvement of the proposed 

strategies was assessed under five worst-case scenarios and validated through nine 

case study. Finally, the resiliency of the power network is quantified by using a 

proposed resilient index (RI) formula. Numerical simulations and technical data 

demonstrate the effectiveness of the proposed resiliency planning strategies in a radial 

distribution system.   
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ABSTRAK 

Projek ini bertujuan untuk meningkatkan daya tahan sistem pengagihan kuasa 

konvensional melalui kemandirian metrik beban kritikal. Rangka kerja dua peringkat 

dicadangkan untuk projek ini, di mana setiap peringkat menggunakan alat yang 

berbeza. Pada peringkat 1, kemampuan daya maju dalam menggunakan perisian Grid 

Pengoptimuman Hibrid Sumber Tenaga Berbilang (HOMER) diterokai untuk 

memodelkan mikrogrid hibrid yang berdaya tahan serta bagus ekonomi, dalam 

persekitaran Malaysia dan seterusnya saiz penjanaan teragih (DG) yang optimum 

ditentukan. MG model yang terdiri daripada Sistem Tenaga Boleh Diperbaharui (RES) 

dan Sistem Penyimpanan Tenaga (ESS) menyumbang kepada pengurangan jumlah kos 

pratetap bersih (NPC), kos tenaga (COE), serta pelepasan karbon. Pada peringkat 2, 

kajian terhadap aliran kuasa dilakukan dengan menggunakan perisian Power World. 

Penempatan DG yang optimum dan strategi pensuisan digunakan bersama-sama saiz 

DG yang optimum, untuk melihat keberkesanan berbanding sistem penanda aras. 

Model sistem ujian IEEE 33-bas digunakan untuk mengesahkan strategi yang 

dicadangkan. Peningkatan daya tahan strategi yang dicadangkan telah diakses di 

bawah lima senario terburuk dan disahkan melalui sembilan kajian kes. Akhir sekali, 

daya tahan rangkaian kuasa dikira dengan menggunakan formula indeks daya tahan 

(RI) yang dicadangkan. Simulasi berangka dan data teknikal menunjukkan 

keberkesanan strategi perancangan daya tahan yang dicadangkan dalam system 

pengagihan jejari. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Project Background 

Many extreme disaster events had occurred worldwide and thus the studies on 

resilient have gained high interest from many countries around the world since the 

recent past decade [1, 2]. It is already well known that a power grid’s performance in 

terms of reliability of its safety infrastructure and efficient operation are the essential 

keys to ensure less interruption of electricity supply to end users. However, reliability 

itself is not sufficient to guarantee a continuous power supply during an extremely 

unfortunate event. Hence, the concept of resilient of power system was introduced, as 

an extended to the traditional principle of reliability. Extremely unfortunate events or 

disasters could come in various ways such as weather-based (natural disasters), man-

made attack, and equipment failure. An ‘unprepared’ power grid would easily collapse 

upon such disasters and cause severe impacts and creating multiple outages [2, 3]. 

Power system resilience is a relatively new concept, and it has gained a lot of attention 

in the recent years. Although there are numerous definitions of resilience, so far there 

is no standard definition for power system context [4]. Resilient are commonly defined 

as the ability of the power grid to adapt, withstand, and quickly recover (response) 

from any rare disaster events [1-3]. The IEEE Task Force Members also concluded the 

same definition, as well as define it as the ability to limit the severity and/or length of 

disruptive events [5].  

1.1.1 Past Resilience Events 

The need to have a resilient power grid has becoming more obvious and crucial, 

following many unexpected events and severe disturbances that had happened 

worldwide which had caused major blackouts.   To name several disaster events that 
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happened worldwide in the recent past decade; in 2008, severe ice storm had hit China 

which had caused power loss for 14.66 million households due to 129 line faults. In 

2011, a strong earthquake hit the north-east region of Japan, which had caused more 

than four million households experienced blackout for seven to nine days. In 2010-

2011, major flooding happened in the north-east of Australia which had cause about 

150,000 end users to experience power outages due to the damage of six zone 

substations and many of poles, transmission lines, and transformers. In 2012, 

Hurricane Sandy hit the east-coast of the United States, which had caused power 

outages to millions of people due to more than 100,000 primary electrical wires were 

destroyed, transformer explosion, and flooding [1, 2]. The California wildfires in 2017 

also had put an increase emphasis on electric grid resiliency [6]. Some other worldwide 

examples of disaster with the number of affected people experienced blackout, are 

summarized in Figure 1.2 [2].  

 

Figure 1.1 Examples of extreme events with respect to year, where M denotes 
million number of users that experienced power outages [2] 

 

Malaysia has also recently seen several extreme natural disaster, regardless the 

country is geographically located just outside of the “Pacific Rim of Fire”. In Malaysia, 

flooding is the biggest natural threat. However, climate change results had caused even 
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more destructions to the country, such as thunderstorms, major floods, and strong 

earthquake. One of the most common natural disasters in Malaysia is a monsoonal 

flood, which can vary in severity depending on where and when it occurs [7]. The 

December 2014 flood was the most significant and largest recorded flood in the history 

of Kelantan state, where 1,900 substations were affected by the floods, including five 

132kV substations were completely submerged for five days long. More than 67% of 

supply in Kelantan was disconnected, along with 13% in Pahang, 6% in Terengganu 

and 1% in Perak. In flood-affected areas, supply was progressively restored; states like 

Pahang and Terengganu had their electricity back within days of the floodwaters 

receding. However, power supply restoration in Kelantan was more difficult due to the 

heavy infrastructure damage [8]. 

In December 2021, an unexpected disaster major flood hits many states of 

Peninsular Malaysia, including Selangor. The floods resulted from severe continuous 

heavy rain which lasted for two to three days. The utility company (TNB), had to shut 

down hundreds of power substations for safety purposes. In Selangor, at least 117 

substations were affected and had caused 5062 homes affected. Power supply 

restoration were done in stages, which took several days to recover. Some electricity 

supply through TNB mobile generators were provided to temporary evacuation centres 

that were affected by the power disruption [9, 10]. In addition, one of the main 

electrical substations (PMU) in Shah Alam was reported exploded due to the flood 

disaster, thus caused blackout to the entire area [11]. 

Furthermore, Malaysia is also susceptible to tsunami and earthquake disasters. 

A strong earthquake has been shaking Ranau, Sabah, in June 2015 [7]. A massive 

tsunami had caused serious destruction to the coastal areas of Malaysia in December 

2004.  However, according to [12], the power stations along the coastline  of 

Peninsular Malaysia were not hit by the tsunami and hence the security of the grid 

system was not affected. Whilst finalizing this project report writing, a latest resilient 

event happened at the west coast region of Sabah state in July 2022. The thunderstorm 

had caused the electricity poles to topple due to fallen trees, soil erosion and flash 

floods in some areas. Power supply failures occurs in several districts of the Sabah. 

Many utility’s installations suffered severe damage due to the extreme weather, which 
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had subsequently affected power supply to consumers. The power supply restoration 

had given priority to critical locations such as hospitals and locations involving public 

safety [13]. 

 

Figure 1.2 Example of the grid utility power distribution equipment affected due 
to severe flood disaster. (This photo is obtained from [10]) 

 

 

1.2 Problem Statement 

The climate change issue nowadays can lead to an even more worrying natural 

disaster. Rapid development, unplanned urbanization, climate change and 

environmental degradation have caused worse occurrence of flash floods in Malaysia, 

especially in urban areas [7]. In Malaysia, the utility usually had opted to shut down 

hundreds and even thousands of substations at the affected locations, for safety 

purposes. Apart from that, electricity poles and power substations also could be 

affected by such disaster. The disaster impact is severe and causing multiple outages 

at a time.  

Microgrid (MG) with renewable energy (RES) and energy storage system 

(ESS) has been identified as a viable solution to improve the conventional distribution 

power system resiliency [1, 4, 6, 14-16]. In order to utilize the advantages potential of 
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MG with RES and ESS, an optimal capacity of the RES and ESS as distributed 

generation (DG) needs to be identified. Optimal DG placement and switching strategy 

also need to be planned. There is a need to investigate on how much resilient 

improvement that the MG with RES and ESS could contribute to the distribution 

system, and how much resilient is the system under different worst-case scenarios. 

For a sustainable resilient MG development, the technical, economical, and as 

well as the environmental aspects need to be under consideration. To have a resilient 

power grid is crucial not only to keep the lights on and to keep the operation running, 

but also to retain the power grid infrastructure. A resilient distribution power grid 

operation is expected to continuously serve critical loads even when disaster events 

occurred, and to secure as much as possible non-critical loads within the power system 

network.  

1.3 Research Objectives 

The aim of this project is to enhance the conventional power distribution 

system’s resiliency by using critical loads survival as the resilience metric and use a 

Resilient Index (RI) to assess and quantify the performance of the proposed strategies. 

To achieve this aim, four objectives are listed as follows: 

(a) To design and obtain an optimum distributed generation (DG) sizing for a 

hybrid microgrid that consist of renewable energy system (RES) and energy 

storage system (ESS).  

(b) To investigate the optimal DG locations and switching control in a radial 

distribution system environment. 

(c) To create a randomize worst-case scenarios and perform simulations. 

(d) To calculate the resilience improvement compared to a benchmark system. 
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1.4 Scope of Project 

The project is limited to the following scopes:  

(a) The simulation and analysis works are limited by using HOMER Grid software 

(Trial version) and Power World simulator software (GOS 19 version).  

(b) The components technical and economic data are limited to the availability in 

the HOMER Grid Library. 

(c) Meteorological and environmental data are limited to the available resources 

in HOMER Grid. 

(d) Temperature effects is not considered. 

(e) The scope is limited to the radial power distribution network by using the 

standard IEEE 33-bus test system.  

 

1.5 Project Report Outline 

This project report consists of five chapters and further details are explained 

and presented in each chapter. Literature reviews related to this project work are 

presented and discussed in Chapter 2. The project research framework and 

methodology are presented in Chapter 3. Chapter 4 presents the results and 

discussions. Finally, the conclusion, project contribution, and recommendation for 

future works  are presented in Chapter 5. 
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