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ABSTRACT 

With the increase of the global demand for palm oil, mechanizing oil palm 
plantations is becoming more and more significant. Even after almost a century since 
the first oil palm plantation in Malaysia, these plantations still rely almost-completely 
on manual labour for many of the harvesting and collection of the fresh fruit bunch 
(FFB) and the loose fruit (LF). Loose fruits that fall away from the FFB have the 
highest oil content since they are originally from the outer layer of the bunch. Due to 
its economic value, collectors have to manually collect these fruits which can result in 
many musculoskeletal disorders due to the bad back, hip and knee postures they have 
to endure on daily basis. Increasing the productivity and minimizing these issues of 
LF collection can be achieved by developing machines that can carry out the collection 
process seamlessly. Although many mechanisms like vacuum type collecting as well 
as racking tools have been implemented, each of which comes with constraints and 
issues like debris filtering and intensive manual labour. With the evolvement of 
robotics as well as machine vision and their applications in recent years, robotic 
collection of these fruits became more and more viable. In this work, automatic 
collection of these fruits using a delta robot along with a vision system for detection 
and localization is explored. A proof of concept of the collection process using a 
parallel delta link robot under a controlled environment is simulated. Additionally, a 
more versatile YOLO based LF detection system is explored. Although the robot 
displayed a capability of collecting over 50 LFs per minute, the integrated vision 
system for the delta robot proved incompetent when presented with different variations 
of LF and hence, a separate YOLO-based LF detection system is introduced. 
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ABSTRAK 

Dengan peningkatan permintaan global untuk minyak sawit, mekanisasi ladang 

kelapa sawit menjadi semakin ketara. Walaupun selepas hampir satu abad sejak ladang 

kelapa sawit pertama di Malaysia, ladang-ladang ini masih bergantung hampir 

sepenuhnya kepada buruh kasar untuk kebanyakan penuaian dan pengumpulan tandan 

buah segar (FFB) dan buah lepas (LF). Buah gembur yang jatuh dari BTS mempunyai 

kandungan minyak yang paling tinggi kerana ia berasal dari lapisan luar tandan. Oleh 

kerana nilai ekonominya, pengumpul perlu mengumpul buah-buahan ini secara 

manual yang boleh mengakibatkan banyak gangguan muskuloskeletal akibat postur 

belakang, pinggul dan lutut yang buruk yang perlu mereka tanggung setiap hari. 

Meningkatkan produktiviti dan meminimumkan isu pengumpulan LF ini boleh dicapai 

dengan membangunkan mesin yang boleh menjalankan proses pengumpulan dengan 

lancar. Walaupun banyak mekanisme seperti mengumpul jenis vakum serta alat 

racking telah dilaksanakan, setiap satu daripadanya datang dengan kekangan dan isu 

seperti penapisan serpihan dan kerja manual intensif. Dengan perkembangan robotik 

serta penglihatan mesin dan aplikasinya dalam beberapa tahun kebelakangan ini, 

koleksi robotik buah-buahan ini menjadi lebih berdaya maju. Dalam kerja ini, 

pengumpulan automatik buah-buahan ini menggunakan robot delta bersama-sama 

dengan sistem penglihatan untuk pengesanan dan penyetempatan diterokai. Bukti 

konsep proses pengumpulan menggunakan robot pautan delta selari di bawah 

persekitaran terkawal disimulasikan. Selain itu, sistem pengesanan LF berasaskan 

YOLO yang lebih serba boleh diterokai. Walaupun robot itu memaparkan keupayaan 

mengumpul lebih 50 LF seminit, sistem penglihatan bersepadu untuk robot delta 

terbukti tidak cekap apabila dibentangkan dengan variasi LF yang berbeza dan oleh 

itu, sistem pengesanan LF berasaskan YOLO yang berasingan diperkenalkan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Malaysia is the second biggest producer and exporter of palm oil in the world. 

In 2019, with over 5.74 million hectares of land, palm oil was the major contributor to 

the value added to the agriculture sector, contributing around RM38.3 billion to the 

Gross Domestic Product (GDP) [1, 2]. These huge prospects of the palm oil industry 

showcase the importance of it to the Malaysian economy and how crucial it is to 

integrate sustainable solutions for problems that arises to ensure economical security 

as well as its future potential value. 

The process of harvesting in the majority of oil palm plantations is consisted 

of six stages namely: branches cutting, fronds stacking, fresh fruit brunches (FFB) 

collection, loose fruit (LF) collection, and finally the transportation to the mill [3].  The 

loose fruit collection stage stands out compared to the rest of the stages as they contain 

the highest amount of oil extraction rate (OER). FFBs alone can turn out an OER of 

around 25%, which can be significantly increased – up to 40% – with careful LF 

collection [4]. Therefore, careful collection of the loose fruit without any debris 

involved is significant for palm oil industry.  

 It is clear that aspects like harvesting procedure, efficiency of the oil mill, and 

plantation practices can impact the total OER [3].  Many commercial plantations now 

have long harvesting round in order to increase the overall collection of the leftover 

LFs. This behaviour is an indication of how crucial LF collection is and how improper 

implementation of this task can be the reason bring about huge loss of potential 

income. In order to ensure the highest possible OER, it is important to make sure the 

LF collection is handled properly, meaning that LF integrity and lack of debris is 

ensured. 
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1.2 Problem Statement 

Harvesting for palm oil industry is a process that is carried out all-year round. 

The cycle consists of multiple stages as the FFBs as well as the subtending fronds have 

to be cut first, then the fronds are stacked. Next, the FFBs are collected then later the 

LFs are collected. Finally, both are sent to the mill. LFs are typically scattered in the 

field and collected manually either by picking or raking. 

Multiple studies have shown that more than 70% of the harvesting labor time 

us dedicated just for collecting LF. additionally shows that 30% of the total fruit 

handling time is just time spent in LF collection [3]. Hand picking of LF is still the 

preferred method of collection as it ensures that the least number of debris is involved. 

Palm oil industry in Malaysia is a labor-intensive industry that is dependent on foreign 

labor. In April 2020, 337,000 migrant workers, worked on Malaysian plantations, 

which constitutes 80% of the workforce [5]. With the COVID-19 pandemic and the 

closure of international borders, labor shortage hit the palm oil industry harshly as the 

supply dropped by around 30% in 2021 [6].  

Manual LF collection is a very laborious work that exposes the collectors to 

ergonomic risks because of the awkward and repetitive posture they have to endure 

especially when hand picking the LF is the method of collection. In 2021, a study 

investigated possible musculoskeletal disorders the collectors might be facing, and the 

result showed that collectors displayed poor and discomfort posture during both LF 

and FFB collection [7].  

The heavy dependance on manual labor for physically demanding tasks like 

LF collection has a negative effect on the production due to its inefficiency. Due to a 

multitude of economic and social factors, it is believed that Malaysia’s reliance on 

foreign workers should not last for long term [8]. Manual LF collection is also time 

consuming and exposes workers to musculoskeletal disorders due to the bad back, hip 

and knee postures they forced to endure on daily basis. Thus, mechanizing the century 

long industry is a consistent problem that now attract many businesses that want to 

utilize the financial prospects of an efficient and reliable process. 
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1.3 Project Objectives 

This project serves as the first stage in the development of a mechanized 

solution that can carry out LF collection by utilizing a robotic system (a parallel delta 

robot). Thus, this project’s objectives are simply: 

1) To simulate a proof-of-concept (POC) of a robotic loose fruit collection system 

based on a delta (parallel link) robot. 

2) To test out the efficiency of the robot’s integrated vision system and explore 

other LF visual detection methods.  

 

1.4 Project Scope 

A robotic LF collection system involves a lot of subsystems that all need to 

work together effectively and efficiently in scenarios similar to that in the field. This 

indicates that solution requires a detailed research and development process for each 

of the subsystems which is carried out on a timeline that exceeds that of this project. 

Thus, the project has a limited scope where only a proof of concept is simulated, one 

that shall discover the challenges presented for the given task in terms of the robotic 

application for mechanical picking as well as the visual detection and localization of 

the LFs themselves. The robot selected for the simulation is the Omron Hornet 565 (3-

axis) as it is present and available for future experimentation in Centre for Artificial 

Intelligence & Robotics lab in Kuala Lampur. Unfortunately, since the robot lacked 

the equipment and software needed to implement the integrated vision system during 

the project timeline, the trials were emulated on the OMRON software which has a 

feature where the emulation can be used to program the robot using a single click. 

Although the robot is a fixed robot which differs from the mobile collaborative robotic 

solution that suits the proposed overall collection system, the Hornet 565 is suitable 

for the objectives of this project where a simulation of picking and visual detection is 

explored to understand the challenges that need to be overcome and refine the overall 

solution accordingly in order to achieve an efficient robotic LF collection solution. 
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