NEURAL NETWORK BASED SELF-TUNING PID CONTROLLER FOR AUTOMATIC VOLTAGE REGULATOR OF HYDROPOWER PLANT

MUTHANNA MOHAMMED OWAID AL-HADEETHI

UNIVERSITI TEKNOLOGI MALAYSIA

NEURAL NETWORK BASED SELF-TUNING PID CONTROLLER FOR AUTOMATIC VOLTAGE REGULATOR OF HYDROPOWER PLANT

MUTHANNA MOHAMMED OWAID AL-HADEETHI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechatronics and Automatic Control)

> School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > JULY 2022

DEDICATION

This work is dedicated to father's soul, who has always motivated us to seek knowledge. Also, to my dear mother who sacrificed so much to continue our study journey. Moreover, to my dear wife, who shared with me the difficulties of this task and endured a lot throughout my study. Furthermore, to my daughters and son, it may be an incentive for them. Finally, to my brothers, sisters and friends who have supported and encouraged me to complete my study mission successfully.

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed to my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor Dr. Mohd Ariffanan Bin Mohd Basri, for encouragement, guidance, and support.

I am also indebted to Universiti Teknologi Malaysia (UTM) for providing me with a conducive learning environment and the necessary facilities to complete my work successfully.

I would also like to thank the Iraqi Ministry of Electricity\ The General Company of Electricity Production (GCEP)\ Middle Region, which gave me this opportunity to complete a master's study with financial support throughout the study period.

ABSTRACT

Hydropower plant is a renewable resource with low operating, maintenance expenses and low environmental effects. Due to the constant load change as a result of changing consumers demand, terminal voltage from the generator is fluctuating for certain period before it settle to the desired level. The amount of fluctuation is negatively influencing the power quality and performance of power system. Automatic voltage regulator (AVR) is playing vital role for maintaining the terminal voltage within desired level. The proportional-integral-derivative (PID) controller's is popularly deployed in AVR system due to its ease structure and straightforward design with almost no computational cost. However, traditional methods of PID tuning in some industrial applications does not meet the required response due to severe load fluctuations. In this work, in order to meet the optimum PID-AVR performance; a three types of neural networks namely: feed forward neural network (FFNN), cascade back propagation neural network (CBPNN), and convolutional neural network (CNN) were used to design three self-tuning PID controllers (NNs-PIDF) for AVR system. These artificial intelligence based controller are proven stunning performance over traditional PID controllers also over those controller made using particle swarm optimization (PSO) and fuzzy logic. The outcomes of this work revealed that FFNN-PIDF based AVR system was able to produce best results e.g. settling time, overshoot, and rise time. The proposed controllers has provided consistence performance in controller stability and robustness tests.

Kaywords: AVR system, Zeigler-Nichols, neural network, self-tuning PID, robustness analysis

ABSTRAK

Loji hidrokuasa adalah satu sumber yang boleh diperbaharui, dengan perbelanjaan operasi penyelenggaraan, dan kesan alam sekitar. yang rendah. Disebabkan oleh perubahan beban yang berterusan akibat perubahan permintaan pengguna, voltan terminal dari penjana turun dan naik dalam tempoh masa tertentu sebelum ia sampai ke aras yang dikehendaki. Kadar turun-naik mempengaruhi secara negatif kualiti kuasa dan prestasi sistem kuasa. Pengawal voltan automatik memainkan peranan yang penting dalam mengekalkan voltan terminal pada aras yang dikehendaki. Kawalan berkadar kamiran terbitan (PID) banyak digunakan dalam sistem AVR disebabkan strukturnya yang mudah dengan tiada kos pengiraan. Namun begitu, metod-metod penalaan tradisional PID dalam beberapa aplikasi industri tidak memberi makluman yang diperlukan disebabkan beban turun-naik pelayan. Dalam kajian ini, untuk memenuhi prestasi PID-AVR yang optima; tiga jenis rangkaian neural iaitu: feed forward neural network (FFNN), cascade back propagation neural network (CBPNN), dan convolutional neural network (CNN) telah digunakan untuk mereka cipta tiga kawalan PID penalaan kendiri (NNs-PIDF) untuk sistem AVR. Kawalan berasaskan kecerdasan buatan ini terbukti mempamerkan prestasi yang sangat hebat menandingi kawalan PID tradisional, serta kawalan yang digunakan dengan menggunakan particle swarm optimization (PSO) dan fuzzy logic. Hasil kajian ini menunjukkan bahawa sistem AVR berasaskan FFNN-PIDF mampu menghasilkan keputusan terbaik, contohnya masa tetapan, overshoot, dan masa menaik. Kawalankawalan yang disarankan telah menyediakan prestasi yang konsisten dalam kestabilan kawalan dan ujian-ujian keteguhan.

Kata kunci: Sistem AVR, Zeigler-Nichols, rangkaian neural, PID penalaan kendiri, analisis keteguhan

TABLE OF CONTENTS

TITLE

DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xiii
LIST OF SYMBOL	xvi
LIST OF APPENDICES	xviii

CHAPTER 1	INTRODUCTION	1
1.1	Preface	1
1.2	Problem statement	2
1.3	Research gap	2
1.4	Objectives	3
1.5	Research question	4
1.6	Scope of the project	5
1.7	Organization of the project	5
CHAPTER 2	LITERATURE REVIEW	7
2.2	Analytical Approaches	10
2.3	Computational or optimization Approaches	12
2.4	Neural networks and Fuzzy logic approaches	18
2.5	Summary	22

CHAPTER 3	RESEARCH METHODOLOGY	
3.1	Introduction	
3.2	Automatic Voltage regulator (AVR)	25
	3.2.1 Amplifier Model	26
	3.2.2 Excitation model	26
	3.2.3 Synchronous Generator model	28
	3.2.4 Sensor Model	29
3.3	Ziegler-Nichols Method	32
3.4	Problem Formulation	37
3.5	Design self-tuning PID based on neural networks	38
	3.5.1 Artificial Neural Networks (ANNs)	39
	3.5.2 Data preparation	42
	3.5.3 Type and structure of neural networks	43
	3.5.4 Training of Neural networks	45
	3.5.5 Simulink of NNs-PID controllers	48
3.6	Summary	49
CHAPTER 4	RESULTS AND DISCUSSION	51
4.1	Introduction	51
4.2	The results of AVR system with and without PID (Z-N method)	
4.3	The results of AVR system with NNs-PID controller and Z-N method	
4.4	Transient analysis	54
4.5	Robustness analysis	60
4.6	Summary	66
CHAPTER 5	CONCLUSION AND FUTURE WORK	67
5.1	Conclusion	67
5.2	Future work	68
REFERENCES		69
APPENDIX		75

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 1.1	Thesis structure and contains summary	6
Table 3. 1	The ideal parameters of AVR system	30
Table 3. 2	Calculations of Kp, Ti and Td in Ziegler and Nichols method	
	(open loop) (Astrom & Hagglund, 1995)	33
Table 3. 3	Calculations of Kp, Ti and Td in Ziegler and Nichols method	
	(closed loop) (Astrom & Hagglund, 1995)	34
Table 3. 4	Artificial neural network training details	46
Table 4. 1	The results of AVR with and without PID controller	52
Table 4. 2	The results of NNs-PIDF controllers and Z-N with filter	54
Table 4. 3	The characteristics of stability performance of NNs-PIDF and	
	Ziegler-Nichols PIDF, for different values of Vref.	56
Table 4. 4	The corresponding PID parameters of NNs-PIDF and Ziegler-	
	Nichols PIDF, for different values of Vref.	57
Table 4. 5	The obtained response characteristics using different controllers	59
Table 4. 6	FFNN-PIDF controller robustness performance	60
Table 4. 7	CBPNN-PIDF controller robustness performance	62
Table 4. 8	CNN-PIDF controller robustness performance	64

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 1.1	Research objectives overview	4
Figure 3.1	The schematic diagram of a simplified AVR 26	
Figure 3.2	Operation configurations of synchronous generator.	29
Figure 3.3	Block diagram of automatic voltage regulator	30
Figure 3.4	Block diagram of AVR with gains and time constants	31
Figure 3.5	The simulation of AVR system without controller.	31
Figure 3.6	AVR system with PID controller prototype	32
Figure 3.7	Flow chart of Ziegler Nichols closed loop method	35
Figure 3.8	Tuning PID controller using ZN method	36
Figure 3.9	The oscillation obtained by Z-N method	36
Figure 3.10	The simulation of AVR system with PID controller	37
Figure 3.11	Step response (practical) of AVR system.	37
Figure 3.12	Step response (ideal) of AVR system.	38
Figure 3.13	The proposed NN-PID controller.	39
Figure 3.14	ANN layer structure demonstrating the input, weights and	
	output.	42
Figure 3.15	The general structure of NN	44
Figure 3.16	The structure of FFNN	44
Figure 3.17	The structure of CBPNN	45
Figure 3.18	The structure of CNN	45
Figure 3.19	The accuracy of FFNN	47
Figure 3.20	The accuracy of CBPNN	47
Figure 3.21	The accuracy of CNN	48
Figure 3.22	Simulation of NNs-PID controller 4	
Figure 3.23	Simulation of NNs-PIDF controller	49
Figure 4.1	Step response of AVR system with and without PID controller	51
Figure 4.2	Step response of all NNs-PID controllers and Z-N without filte	r 53
Figure 4.3	Step response of all NNs-PIDF controllers and Z-N with filter	53
Figure 4.4	The response of terminal voltage when Vref is 0.5 (pu)	55

Figure 4.5	The response of terminal voltage when Vref is 1 (pu)	55
Figure 4.6	The response of terminal voltage when Vref is 1.2 (pu).	56
Figure 4.7	Step response of AVR system for different self-tuning	
	techniques	58
Figure 4.8	The response of terminal voltage when τa Changing	
	(-50% to +50%) for FFNN-PIDF	61
Figure 4.9	The response of terminal voltage when τe Changing	
	(-50% to +50%) for FFNN-PIDF	61
Figure 4.10	The response of terminal voltage when τg changing	
	(-50% to +50%) for FFNN-PIDF	62
Figure 4.11	The response of terminal voltage when τa Changing	
	(-50% t0 +50%) for CBPNN-PIDF	63
Figure 4.12	The response of terminal voltage when τe Changing	
	(-50% to +50%) for CBPNN-PIDF	63
Figure 4.13	The response of terminal voltage when τg changing	
	(-50% to +50%) for CBPNN-PIDF	64
Figure 4.14	The response of terminal voltage when τa Changing	
	(-50% - +50%) for CNN-PIDF	65
Figure 4.15	The response of terminal voltage when τe Changing	
	(-50% to +50%) for CNN-PIDF	65
Figure 4.16	The response of terminal voltage when τg changing	
	(-50% - +50%) for CNN-PIDF	66

LIST OF ABBREVIATIONS

AVR	-	Automatic voltage regulator	
PID	-	Proportional integral derivative	
ADP	-	Adaptive dynamic programming	
RHC	-	Routh-Hurwitz criterion	
FOPID	-	Fractional order proportional derivative integral	
ITAE	-	Integral Time Absolute Error	
IAE	-	Integral Absolute Error	
ITSE	-	Integral Time Square Error	
ISE	-	Integral Square Error	
GA	-	Genetic algorithm	
PSO	-	Practical swarm Optimization	
STC	-	Self-tuning control	
IE	-	Integral error	
Ms	-	Modulus of sensitivity function	
Mn	-	Measurement noise	
FPC	-	Frequency linked pricing control	
ALFC	-	Automatic load frequency control	
DFIG	-	Doubly fed induction generators	
ABT	-	Availability based tariff	
ChBWO	-	Chaotic Black Widow Optimization	
ZLG	-	Zwe-Lee Gaing's	
PSS	-	Power System Stabilizer	

SMIB	-	Single-Machine Infinite-Bus
YSGA	-	Yellow saddle goatfish algorithm
FVOPID	-	Fractional-variable-order proportional integral derivative
LFC	-	Load frequency control
COA	-	Coyote optimization algorithm
PIDA	-	Proportional integral derivative accelerator
WOA	-	Whale optimization algorithm
CS	-	Cuckoo Search
VURPSO	-	Velocity update relaxation particle swarm optimization
CRPSO	-	Crazy particle swarm optimization
ABC	-	Artificial Bee Colony
DE	-	Differential Evolution
ROC	-	Receiver Operating Characteristic
ALO	-	Ant Lion Optimizer algorithm
CAs	-	Cultural algorithms
MOEO	-	Multi-objective evolutionary optimizers
CNC-ABC	-	Cyclic exchange neighborhood with chaos- Artificial Bee Colony
CAS	-	Chaotic Ant Swarm
ACO-NM	-	Ant Colony Optimization algorithm with the Nelder–Mead approach
2DOF-PID	-	Two-degree-of-freedom PID controller
ANNs	-	Artificial neural networks
STNPID	-	Self-tuning neural network PID controller
SVC	-	Static VAR Compensator
TLBO	-	Teaching-learning based optimization
FPID	-	Fuzzy PID

FPIDF	-	Fuzzy PID with filter
FLC	-	Fuzzy Logic Controller
PLCs	-	Programmable logic controllers
RBF-NN	-	Radial-basis function network
GNFPID	-	Genetic neural Fuzzy PID
AGC	-	Automatic generating control
TSFL	-	Takagi Sugeno Fuzzy Logic
MSE	-	Mean square error
CD	-	Correct decision
TD	-	Total decision
Pu	-	Per unit
Vref	-	Reference voltage

LIST OF SYMBOL

k _p	- Proportional gain
k _i	- Integral gain
k _d	- Derivative gain
K _a	- Amplifier gain
$ au_a$	- Amplifier time constant
K _e	- Exciter gain
$ au_e$	- Exciter time constant
\mathbf{K}_{g}	- Generator gain
$ au_g$	- Generator time constant
K _r	- Sensor gain
τ _r	- Sensor time constant
K _u	- Ultimate gain
T _u	- Ultimate period
T _i	- Integral time constant
T _d	- Derivative time constant
T _r	- Rise time
To	- Overshoot time
Ts	- Settling time
Op	- Overshoot period
$in_i^{(i)}$	- Input of hidden layer
W _{ij}	- Weight of hidden layer that connected with input layer

$O_j^{(j)}$	-	Output of input layer
f	-	Activation function
у	-	Actual output vector of neural network
W _{li}	-	Weight of hidden layer that connected with output layer
$O_i^{(i)}$	-	Output of hidden layer
Т	-	Target vector of neural network
е	-	Error vector of neural network
X _{Nj}	-	Input vector of neural network

TITLE

LIST OF APPENDICES

PAGE

Appendix A

APPENDIX

Gantt Chart

75

CHAPTER 1

INTRODUCTION

1.1 Preface

Power generation by means of coal and other traditional fuels are amongst main pollution causes due to its harsh litters. Alternatively, many other sources of energy are invented so far with no negative impact on the environments (Beires et al., 2018). Those means have come with good economic advantages since conventional fuel usage is dispensed. Power is producible after power turbines (generators) which in turn required the exciters, which make turbines coils to run and produce the required energy. In hydro power plants, water dynamic energy is used to run the turbines, has such power plants are established within water falling areas such as dams and natural waterfalls (Weldcherkos et al., 2021). Power with big amounts can be generated from the hydropower plants makes it outperform over other renewable energy resources such as wind and solar power plants. Electrical loads in the transmission and distribution networks are usually variable as a result of changing consumer usage, which in turn causes the voltage of generator terminals to fluctuate in generating stations. Automatic voltage regulator (AVR) is proven noteworthy performance in controlling the generator's output to a constant level. AVR works to determine the error in produced voltage with respect to a reference voltage (to be set within AVR configurations). This error is represented by the difference between generator output voltage and AVR reference voltage. The quality of power generated in hydro power plant is limited to AVR configuration accuracy. Controllers such as Proportional integral derivative (PID) are used to tune up AVR so that constant voltage is ensured at generator terminals. However, traditional methods of tuning PID controller in AVR system does not meet the required response. In this project, neural network is being used for implementing of self-tuning AVR system.

1.2 Problem statement

Providing a constant voltage to the consumer is one of the important priorities in the field of electrical energy production, in order to ensure the work of consumer's appliances within the rated voltages. AVR takes responsibility to maintain the generator terminal voltage within requires levels according to regulator reference voltage. Therefore, AVR preforms voltage mismatch calculation by subtracting terminal voltage from existing regulator reference voltage. Considering that generator terminal voltage is fluctuating so frequently as a result of continuous load change, AVR responses to such fluctuations might be differ in time which trigger another drawback in system stability. Settling time uncertainty forces to use external controllers such as PID in order to stabilize the system. PID processes is taking place in two stages, firstly, time- integration which stabilize the voltages by integrating the voltage signal over the time. The gain added on the voltage signal during this stage is influencing the system response time for voltage fluctuation. Consequently, the resultant of the integration is further optimized by applying derivation in which scales up/down the final value in order to reach the maximum approximation, which in turn enhance the system's response. Inaccurate tuning of PID parameters in AVR system may lead to drawback such as high delay system response, which make the system to fall in confronting generator voltage fluctuation. PID controller integral process involves three gains balancing which impact the performance of PID. In spite of good voltage regulation, AVR system may suffer from delay in responding time for voltage fluctuation.

1.3 Research gap

In spite of well designing of PID controller (Herbst, 2021), PID performance remains unstable while other interferences such as power surge, temperature hike and weather fluctuation are occurring (Kezunovic et al., 2008). Hence, research activities are more concentrating to optimize the performance of AVR-PID system by optimizing the gains of PID controller. Cuckoo Search algorithm is used at (Sikander & Thakur, 2020) for this purpose, this algorithm is suffering from shortcoming such as slower convergence. From the other hand, analytical approach such as adaptive dynamic programming (ADP) method is used at (Batmani & Golpîra, 2019), which involves high computational budget. Routh-Hurwitz criterion (RHC) is analytical method used to evaluate the gains of PID controller at (Soliman & Ali, 2021), this method cannot be deployed for non-linear systems.

1.4 Objectives

This research focuses on controller part in AVR system with intension to enhance the AVR response to terminal voltage fluctuation. For this purpose, the following objectives are set. Figure 1.1 is demonstrating the objectives:

- i. Design PID control of AVR system using Ziegler-Nichols method.
- Design Self-Tuning PID control of AVR system based on neural network that ensure the robustness of the controller to deal with uncertainty for AVR system.
- iii. Compare the results of traditional PID controller and the proposed Self-Tuning PID controller of AVR system in terms of rise time, settling time and overshoot.

Figure 1.1 Research objectives overview

1.5 Research question

The purpose of the study is to answer the following questions:

i- Will a self-tuning PID controller based on a neural network for AVR outperform a traditional PID controller for automatic voltage regulation?

ii- Can a neural network based self-tuning PID controller for AVR system yield better performance in terms of rise time, settling time, overshoot and robustness?

1.6 Scope of the project

- The current scope of research includes the development of a PID controller which to compare the performance of the traditional PID with the developed PID based on neural network.
- ii. The traditional PID tuning method is limited to Ziegler Nichols (ZN) method.
- iii. The project is implemented using MATLAB\SIMULINK.
- iv. The proposed controller is applied only to linear AVR system on MATLAB\SIMULINK.

1.7 Organization of the project

This project report is consisting of five chapters that prescribing the proposed methodology and techniques of AVR controlling. From the other hand, the impact of various traditional and automatic controllers of AVR are discussed. Therefore, the structure of this project report can be as in herein Table 1.1.

Chapter	Chapter Title	Brief Introduction
Number	-	
1	Introduction	Includes a summarized introduction of the
		automatic voltage regulator (AVR) and illustrating
		the problem statement and the objectives of the
		project.
2	Literature Review	Demonstrates the previous attempts made in the
		previous studies on interest of automatic voltage
		regulator (AVR) and its control methods.
3	Research	Illustrates the infrastructure of the Automatic
	methodology	voltage regulator (AVR) as well as the traditional
		controller and automatic/smart controllers also the
		mathematical modelling of the research problem.
4	Results and	Reviews with the required discussions the results
	Discussions	obtained after involving the proposed techniques.
5	Conclusion	Includes the conclusions of the project
6	References	Enlists the references and books used while
		constructing of this project report.

Table 1. 1Thesis structure and contains summary

REFERENCES

- A.Abood, A., M. Tuaimah, F., & H. Maktoof, A. (2012). Modeling of SVC Controller based on Adaptive PID Controller using Neural Networks. International Journal of Computer Applications, 59(6), 9–16. https://doi.org/10.5120/9551-4007
- AbouOmar, M. S., Su, Y., Zhang, H., Shi, B., & Wan, L. (2022). Observer-based interval type-2 fuzzy PID controller for PEMFC air feeding system using novel hybrid neural network algorithm-differential evolution optimizer. Alexandria Engineering Journal, 61(9), 7353–7375. https://doi.org/10.1016/j.aej.2021.12.072
- Al Gizi, A. J. H., Mustafa, M. W., Al-geelani, N. A., & Alsaedi, M. A. (2015). Sugeno fuzzy PID tuning, by genetic-neutral for AVR in electrical power generation.
 Applied Soft Computing Journal, 28, 226–236. https://doi.org/10.1016/j.asoc.2014.10.046
- Anwar, M. N., & Pan, S. (2014). A frequency domain design of PID controller for an AVR system. Journal of Zhejiang University: Science C, 15(4), 293–299. https://doi.org/10.1631/jzus.C1300218
- Astrom, K. J., & Hagglund, T. (1995). : PID Controllers : : Theory, Design, Tuning (second edi).
- Babu, A. G. S., & Chiranjeevi, B. T. (2016). Implementation of fractional order PID controller for an AVR system using GA and ACO optimization techniques. IFAC-PapersOnLine, 49(1), 456–461. https://doi.org/10.1016/j.ifacol.2016.03.096
- Batmani, Y., & Golpîra, H. (2019). Automatic voltage regulator design using a modified adaptive optimal approach. International Journal of Electrical Power and Energy Systems, 104(February 2018), 349–357. https://doi.org/10.1016/j.ijepes.2018.07.001
- Beires, P., Vasconcelos, M. H., Moreira, C. L., & Peças Lopes, J. A. (2018). Stability of autonomous power systems with reversible hydro power plants: A study case for large scale renewables integration. Electric Power Systems Research, 158, 1– 14. https://doi.org/10.1016/j.epsr.2017.12.028
- Bhullar, A. K., Kaur, R., & Sondhi, S. (2020). Design of FOPID Controller for

Optimizing AVR System using Neural Network Algorithm. 2020 IEEE 17thIndiaCouncilInternationalConference,INDICON2020.https://doi.org/10.1109/INDICON49873.2020.9342274

- Bingul, Z., & Karahan, O. (2018). A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. Journal of the Franklin Institute, 355(13), 5534–5559. https://doi.org/10.1016/j.jfranklin.2018.05.056
- Blondin, M. J., Sanchis, J., Sicard, P., & Herrero, J. M. (2018). New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder–Mead algorithm. Applied Soft Computing Journal, 62, 216–229. https://doi.org/10.1016/j.asoc.2017.10.007
- Blondin, M. J., Sicard, P., & Pardalos, P. M. (2019). Controller Tuning Approach with robustness, stability and dynamic criteria for the original AVR System. Mathematics and Computers in Simulation, 163, 168–182. https://doi.org/10.1016/j.matcom.2019.02.019
- Bourouba, B., Ladaci, S., & Schulte, H. (2019). Optimal design of fractional order PIλDμ controller for an AVR system using Ant Lion Optimizer. IFAC-PapersOnLine, 52(13), 200–205. https://doi.org/10.1016/j.ifacol.2019.11.304
- Chatterjee, A., Mukherjee, V., & Ghoshal, S. P. (2009). Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system. International Journal of Electrical Power and Energy Systems, 31(7–8), 323–333. https://doi.org/10.1016/j.ijepes.2009.03.012
- Elbelady, S. A., Fawaz, H. E., & Aziz, A. M. A. (2016). Online Self Tuning PID Control Using Neural Network for Tracking Control of a Pneumatic Cylinder Using Pulse Width Modulation Piloted Digital Valves. International Journal of Mechanical and Mechatronics Engineering, 16(3), 123–136.
- Eltag, K., & Zhang, B. (2021). Design Robust Self-tuning FPIDF Controller for AVR System. International Journal of Control, Automation and Systems, 19(2), 910– 920. https://doi.org/10.1007/s12555-019-1071-8
- Fergani, N. (2022). Direct synthesis-based fractional-order PID controller design: application to AVR system. International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-022-00940-6
- Gozde, H., & Taplamacioglu, M. C. (2011). Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system.

Journal of the Franklin Institute, 348(8), 1927–1946. https://doi.org/10.1016/j.jfranklin.2011.05.012

- Gupta, A., Verma, Y. P., & Chauhan, A. (2020). Contribution of frequency linked pricing control on ALFC and AVR power system integrated with DFIG based wind farms. Engineering Science and Technology, an International Journal, 23(2), 325–333. https://doi.org/10.1016/j.jestch.2019.06.008
- hadi saadat. (1999). Power system analysis. McGraw-Hill Series in Electrical and Computer Engineering.
- Herbst, G. (2021). Transfer function analysis and implementation of active disturbance rejection control. Control Theory and Technology, 19(1), 19–34. https://doi.org/10.1007/s11768-021-00031-5
- Hosseini, S. A., Shirani, A. S., Lotfi, M., & Menhaj, M. B. (2020). Design and application of supervisory control based on neural network PID controllers for pressurizer system. Progress in Nuclear Energy, 130(February), 103570. https://doi.org/10.1016/j.pnucene.2020.103570
- J.h. Al Gizi, A., Mustafa, M. W., M.a. Al Zaidi, K., & K.j. Al-Zaidi, M. (2015). Integrated PLC-fuzzy PID Simulink implemented AVR system. International Journal of Electrical Power and Energy Systems, 69, 313–326. https://doi.org/10.1016/j.ijepes.2015.01.009
- Joseph, S. B., Dada, E. G., Abidemi, A., Oyewola, D. O., & Khammas, B. M. (2022). Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems. Heliyon, 8(5), e09399. https://doi.org/10.1016/j.heliyon.2022.e09399
- Kezunovic, M., Dobson, I., & Dong, Y. (2008). Impact of Extreme Weather on Power System Blackouts and Forced Outages: New Challenges. 7th Balkan Power Conference, 12(May 2014), 1–5.
- Lee, Y. S., & Jang, D. W. (2021). Optimization of neural network-based self-tuning pid controllers for second order mechanical systems. Applied Sciences (Switzerland), 11(17). https://doi.org/10.3390/app11178002
- Liu, J. (2018). Intelligent control design and MATLAB simulation. Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd. 2018. https://doi.org/10.1007/978-981-10-5263-7
- Mosaad, A. M., Attia, M. A., & Abdelaziz, A. Y. (2019). Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams

Engineering Journal, 10(4), 755–767. https://doi.org/10.1016/j.asej.2019.07.004

- Moschos, I., & Parisses, C. (2022). A novel optimal PIλDND2N2 controller using coyote optimization algorithm for an AVR system. Engineering Science and Technology, an International Journal, 26(xxxx). https://doi.org/10.1016/j.jestch.2021.04.010
- Mukherjee, V., & Ghoshal, S. P. (2007). Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system. International Journal of Electrical Power and Energy Systems, 29(9), 679–689. https://doi.org/10.1016/j.ijepes.2007.05.002
- Munagala, V. K., & Jatoth, R. K. (2022). Improved fractional PIλDµ controller for AVR system using Chaotic Black Widow algorithm. Computers and Electrical Engineering, 97(November). https://doi.org/10.1016/j.compeleceng.2021.107600
- Nahas, N., Abouheaf, M., Darghouth, M. N., & Sharaf, A. (2021). A multi-objective AVR-LFC optimization scheme for multi-area power systems. Electric Power Systems Research, 200(June), 107467. https://doi.org/10.1016/j.epsr.2021.107467
- Oziablo, P., Mozyrska, D., & Wyrwas, M. (2021). Fractional-variable-order digital controller design tuned with the chaotic yellow saddle goatfish algorithm for the AVR system. ISA Transactions, xxxx. https://doi.org/10.1016/j.isatra.2021.07.006
- Rodrigues, F., Molina, Y., Silva, C., & Ñaupari, Z. (2021). Simultaneous tuning of the AVR and PSS parameters using particle swarm optimization with oscillating exponential decay. International Journal of Electrical Power and Energy Systems, 133(June). https://doi.org/10.1016/j.ijepes.2021.107215
- Rodriguez-Abreo, O., Rodriguez-Resendiz, J., Fuentes-Silva, C., Hernandez-Alvarado, R., & Falcon, M. D. C. P. T. (2021). Self-Tuning Neural Network PID with Dynamic Response Control. IEEE Access, 9(April), 65206–65215. https://doi.org/10.1109/ACCESS.2021.3075452
- Rodríguez-Molina, A., Mezura-Montes, E., Villarreal-Cervantes, M. G., & Aldape-Pérez, M. (2020). Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Applied Soft Computing Journal, 93, 106342. https://doi.org/10.1016/j.asoc.2020.106342

Sahib, M. A. (2015). A novel optimal PID plus second order derivative controller for

AVR system. Engineering Science and Technology, an International Journal, 18(2), 194–206. https://doi.org/10.1016/j.jestch.2014.11.006

- Sahib, M. A., & Ahmed, B. S. (2016). A new multiobjective performance criterion used in PID tuning optimization algorithms. Journal of Advanced Research, 7(1), 125–134. https://doi.org/10.1016/j.jare.2015.03.004
- Sheet, A. F. (2021). Optimization of DC motor speed control based on fuzzy logic-PID controller. Analysis and Data Processing Systems, 3, 143–153. https://doi.org/10.17212/2782-2001-2021-3-143-153
- Sikander, A., & Thakur, P. (2020). A new control design strategy for automatic voltage regulator in power system. ISA Transactions, 100, 235–243. https://doi.org/10.1016/j.isatra.2019.11.031
- Sikander, A., Thakur, P., Bansal, R. C., & Rajasekar, S. (2018). A novel technique to design cuckoo search based FOPID controller for AVR in power systems.
 Computers and Electrical Engineering, 70, 261–274. https://doi.org/10.1016/j.compeleceng.2017.07.005
- Soliman, M., & Ali, M. N. (2021). Parameterization of robust multi-objective PIDbased automatic voltage regulators: Generalized Hurwitz approach. International Journal of Electrical Power and Energy Systems, 133(June), 107216. https://doi.org/10.1016/j.ijepes.2021.107216
- Song, Y. (2014). Intelligent PID controller based on fuzzy logic control and neural network technology for indoor environment quality improvement. PhD Thesis, University of Nottingham, June.
- Suykens, J. A. K., Vandewalle, J. P. L., & De Moor, B. L. R. (1996). Artificial Neural Networks for Modelling and Control of Non-Linear Systems. Dordrecht, Springer Science+Business Media 1996, Originally published by Kluwer Academic Publishers in. https://doi.org/10.1007/978-1-4757-2493-6
- Veerasamy, V., Abdul Wahab, N. I., Ramachandran, R., Othman, M. L., Hizam, H., Satheesh Kumar, J., & Irudayaraj, A. X. R. (2022). Design of single- and multiloop self-adaptive PID controller using heuristic based recurrent neural network for ALFC of hybrid power system. Expert Systems with Applications, 192(March 2021), 116402. https://doi.org/10.1016/j.eswa.2021.116402
- Veinović, S., Stojić, D., & Joksimović, D. (2022). Optimized four-parameter PID controller for AVR systems with respect to robustness. International Journal of Electrical Power and Energy Systems, 135(January 2021).

https://doi.org/10.1016/j.ijepes.2021.107529

- Weldcherkos, T., Salau, A. O., & Ashagrie, A. (2021). Modeling and design of an automatic generation control for hydropower plants using Neuro-Fuzzy controller. Energy Reports, 7, 6626–6637. https://doi.org/10.1016/j.egyr.2021.09.143
- ZHANG, D.-L., TANG, Y.-G., & GUAN, X.-P. (2014). Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm. Acta Automatica Sinica, 40(5), 973–979. https://doi.org/10.1016/s1874-1029(14)60010-0