
GOAL-SEEKING NAVIGATION BASED ON MULTI-AGENT 

REINFORCEMENT LEARNING APPROACH  

ABDUL MUIZZ BIN ABDUL JALIL 

UNIVERSITI TEKNOLOGI MALAYSIA



 

GOAL-SEEKING NAVIGATION BASED ON MULTI-AGENT 

REINFORCEMENT LEARNING APPROACH 

 

 

 

 

 

 

 

ABDUL MUIZZ BIN ABDUL JALIL 

 

 

 

 

 

 

 

A project report submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Engineering (Mechatronic and Automatic Control) 

 

 

School of Electrical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

JULY 2022 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my parent, who has been support me financially 

and morally throughout of this thesis. Despite all the obstacle encounter, this thesis 

was able to finished and without them my studies would not be finished.  

  



v 

ACKNOWLEDGEMENT 

During the project is carry out, I was able to can acquaintances with many 

people such as researchers and academicians. They have contributed to my 

understanding and thoughts. In particular, I wish to express my sincere appreciation to 

my thesis supervisor, Professor Dr Mohd Ridzuan Bin Ahmad, for his encouragement, 

guidance, and critics. I am also indebted to my other supervisor, Carlos Mateo from 

the ImVIA laboratory at the University Institute of Technology, Le Creusot, France, 

who has taught me many things about deep reinforcement learning and has shaped my 

deep understanding of this topic. 

I was able to finish the projects due to the resources used at the ImVIA 

laboratory. The project was able to complete by using the graphic card NVIDIA P400 

2GB as well as a computer workspace.   

I also want to thank my fellow postgraduate student who has been support me 

during my presence in the laboratory. I also extend my appreciation to my colleagues 

for extending their help and other occasions' support. I also want to appreciate all my 

family members as they also play their support. 

  



vi 

ABSTRACT 

Mobile robotics has been applied in many fields of industry and has been an 

impact on many industries. Most modern industries depend on mobile robots ranging 

from indoor to outdoor applications such as robot vacuum to robot delivery. The most 

important aspect of mobile robots is the navigation algorithms that allow the robot to 

move through certain terrain to reach the desired state. Many of the algorithms that 

contributed the most are the SLAM (simultaneous localisation and mapping) and the 

path planning algorithm. SLAM is mostly used to estimate the feedback states such as 

localization and perspective map, whereas path planning is mainly a planner from state 

estimation. The RL (reinforcement learning) researcher has been studying the RL in 

robotics navigation focusing on areas such as motion planning, and perception 

estimation. There have been breakthroughs in the decades and these have been closing 

the gap between RL and control systems since they are the same but initially develop 

from different areas and directions but recently, much of it is converged to develop in 

the same field. Although the approached problems are what makes it different, it is 

still the same problems. This study explores implementing the multi-agent in DRL 

(deep RL), specifically to train a single policy in a multi-agent environment since 

robotics simulation can run many models and therefore, it is unnecessary to run many 

simulators to train the policy in a batch. Since RL is semi-supervised learning through 

reward signal, similar to the cost function in a control system where the policy will try 

to maximize the return of the expected reward of trajectory. The scope of this study 

mainly covers indoor navigation and motion planning. The toolkits to perform the 

study are stable-baselines3, Gazebo simulator, and OpenAI Gym. The robot used in 

the simulation for this study is the Turtlebot3 burger since it does not require a stability 

controller and it has the least number of velocity commands. The Turtlebot3 burger 

sensors are odometry, IMU (inertial measurement unit), and a laser that serves as 

feedback observation states. The UKF (unscented Kalman filter) is used as state 

estimation and to utilize any feedback states. Although the desired states are not a part 

of the observation states, this is not the case for DRL. Given the nature of the robotics 

simulation, is possible to run a single simulator but still be able to train the policy in 

batches. Since there is no RL environment specifically to conduct this study, the 

multiagent environment was implemented to meet the study objectives. The policy 

network was constructed using LSTM (long short-term memory) and MLP (multilayer 

perceptron) served as feature extraction and decoder. The integration between the DRL 

algorithms with ROS (Robot Operating System) is able to train and communicate 

between these various connections but was not able to achieve similar results as 

position and obstacle avoidance because of numerous reasons. Due ROS being peer-

to-peer system is possible to use other DRL library such as RLlib (Industry-Grade RL) 

with ROS as future work as RLlib is support for distribution training for DRL.  
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ABSTRAK 

Robotik boleh gerak telah digunakan dalam banyak bidang industri dan telah 

memberi kesan kepada banyak industri. Kebanyakan industri moden bergantung 

kepada robot boleh gerak yang terdiri daripada aplikasi dalam bangunan seperti robot 

vakum kepada robot penghantaran. Aspek terpenting robot boleh gerak ialah algoritma 

navigasi yang membolehkan robot bergerak melalui kawasan tertentu untuk sampai ke 

keadaan impian. Kebanyakan algoritma yang banyak menyumbang ialah SLAM 

(penyetempatan and peta serentak) dan algoritma perancangan laluan. SLAM 

kegunaannya lebih kepada untuk menganggar keadaan suap balik seperti lokalisasi dan 

peta perspektif, di mana perancangan laluan adalah terutamanya sebagai perancang 

daripada anggaran negeri. Penyelidik RL (pembelajaran pengukuhan) telah mengkaji 

RL dalam navigasi robotik yang memfokuskan dalam bidang seperti perancangan 

gerak, anggaran persepsi dan terdapat kejayaan dalam beberapa dekad dan ini telah 

merapat jurang antara RL dan sistem kawalan kerana ia adalah sama tetapi pada 

mulanya berkembang dari kawasan dan hala tuju berbeza tetapi baru-baru ini, 

kebanyakannya disatukan untuk membangun dalam bidang yang sama. Kajian ini 

meneroka pelaksanaan pelbagai ejen dalam DRL (pembelajaran pengukuhan 

mendalam), khususnya untuk melatih satu dasar dalam persekitaran berbilang ejen. 

Memandangkan simulasi robotik boleh menjalankan banyak model dan oleh itu, 

adalah tidak perlu menjalankan banyak simulator untuk melatih dasar dalam satu 

kelompok oleh kerana RL ialah pembelajaran berpenyelia separa melalui isyarat 

ganjaran, serupa dengan fungsi kos dalam sistem kawalan di mana polisi akan cuba 

memaksimumkan pulangan ganjaran trajektori yang dijangkakan. Skop kajian ini 

terutamanya meliputi navigasi dalaman dan perancangan gerakan. Set alat digunakan 

melaksanakan kajian adalah stable-baselines3, simulator Gazebo dan OpenAI Gym. 

Robot yang digunakan dalam simulasi untuk kajian ini ialah Turtlebot3 burger kerana 

tidak memerlukan pengawal kestabilan dan mempunyai bilangan arahan halaju yang 

paling sedikit. Penderia burger Turtlebot3 ialah odometri, IMU (unit ukuran inersia) 

dan laser yang berfungsi sebagai keadaan pemerhatian suap balik. UKF (turas Kalman 

tanpa wangian) digunakan sebagai anggaran keadaan dan untuk menggunakan mana-

mana keadaan maklum balas. Walaupun keadaan yang dikehendaki bukan sebahagian 

daripada keadaan pemerhatian, ini tidak berlaku untuk DRL. Memandangkan sifat 

simulasi robotik, adalah mungkin untuk menjalankan satu simulator tetapi masih dapat 

melatih dasar dalam kelompok. Memandangkan tiada persekitaran RL khusus untuk 

menjalankan kajian ini, persekitaran multiagen telah dilaksanakan untuk memenuhi 

objektif kajian. Rangkaian polisi telah dibina menggunakan LSTM (ingatan jangka 

pendek dan panjang) dan MLP (perseptron berbilang lapisan) berfungsi sebagai 

penyarian sifat dan penyahkod. Penyepaduan antara algoritma DRL dengan ROS 

(sistem pengendalian robot) dapat melatih dan berkomunikasi antara pelbagai 

sambungan ini tetapi tidak dapat mencapai keputusan yang sama seperti pengelakan 

kedudukan dan halangan kerana pelbagai sebab. Oleh sebab ROS ini sistem rangkaian 

rakan ke rakan adalah kemungkinan untuk menggunakan rujukan DRL lain seperti 

RLlib (gred-industri RL) dengan ROS sebagai kerja masa hadapan kerana RLlib ada 

sokongan untuk latihan pengagihan untuk DRL. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

The study of robotics has been around since 1961 after the concept of robotics 

was introduced in 1940 by Isaac Asimov in his works. Since then, many problems 

related to robotics have been studied. Mobile robots have numerous applications in 

industries from agriculture, automotive, robot vacuum, all the way to courier shipping 

management, and some other examples are shown in Figure 1.1, like a vacuum 

aspirator robot from Roomba (a), a warehouse robot used in Amazon warehouse (b) 

and robot delivery by Amazon Prime (c) to name a few of them. Mobile robots have 

many forms and can be classified as wheeled mobile robot, legged mobile robot, and 

drone [1]. What makes mobile robot’s different from other robots it’s the mobility to 

move through the terrain on specific applications, as mentioned before. The navigation 

model of perception can be divided into geometric, topological, semantical, and 

perception models navigation. Other relevant aspects are the types of environments 

where robots are used, such as outdoor, semi-outdoor, indoor, and semi-indoor [2]. 

The robots have actuators such as motors attached to their joints, and they are what 

give the ability to control through electricity. Typically, the control system can be an 

open-loop or closed-loop control system where the measuring from the sensor is 

feedback to a controller and the controller will compute the cost function to predict the 

motion into motors in this case. The controller for motions is usually a variation of 

PID controller, Full-State-Feedback, or the others.  
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(a)                                    (b)                                        (c) 

Figure 1.1 Robotics application. (a) Robot vacuum. (b) Warehouse robot.  

(c) Delivery robot  

Many navigation problems in mobile robotics have been researched. Currently, 

the navigation problems involved mapping, path planning, localization, and motion 

control. To produce perception mapping by scanning the surroundings to produce an 

occupancy map represented by binary or probabilistic values for robot understanding 

of obstacles in environment space [3]. But mapping requires localization of the robot 

which is to determine the position of the robot in a known map which obtains by 

feature extraction using vision or time of flight sensors for scanning the environment. 

By determining robot localization, mapping the unknown environment is possible then 

a path to the goal position can be realized.  Currently, the most common approach for 

solving this problem is the simultaneous localization and mapping (SLAM) techniques 

which intend to do all related problems in multi-tasking such as mapping the 

environment while measuring the robot's location in the environment. Because of 

drawbacks in measuring the states, often SLAM is deployed with filter methods such 

as the Kalman filter to estimate the probabilistic localization as well as estimate the 

obstacles states [4]. Map on the other hands, can represent something like occupancy 

grid in Figure 1.2. 
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Figure 1.2 Occupancy grid mapping and localization 

The DRL, incorporates a deep learning approach in the RL framework (Figure 

1.3) [5][6], and it differs from DL in how the data is collected. While in supervised 

learning, the data consists of a set of predicted and ground truth collection of samples, 

in DRL there is no ground truth instead the data is collected dynamically from the 

environment such as the surroundings and learned from the reward signal compute 

from the environment itself during training. Thus, DRL can be regarded as semi-

supervised where humans design the shape of the reward to be learned to maximize or 

minimize the behaviour, depending on whether it is a positive or negative reward. 

Based on the reward, the gradient descent can be achieved, to update the weight 

parameters that lead to the optimal policy and if the policy is a controller thus the terms 

control policy is called [7]. The notations differ between RL and control system theory, 

and they usually refer to the same thing because it is developed in different fields such 

as computer science and control engineering field. Because the way the policy itself is 

deep neural networks means that it cannot be analysed in the same aspect as in control 

systems such as stability, time transient analysis, etc.  

 

Figure 1.3 The basic component of RL 
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1.2 Problem Statement 

Often, most of the controllers develop using a control system approach usually 

required to analyse the dynamics of the robot mechanism made of the chassis and the 

actuator used as a transducer (conversion electrical to mechanical energy). The 

mathematical of this dynamic system can sometimes is hard to estimate and can 

consume time to obtain near accurate modelling of the dynamic system as illustrate in 

Figure 1.4. Although most of this process can be simplify using system identification. 

But this approach needs very good data collection that described all the necessary 

behaviour. The DRL model-free is a good solution that does not need the robot 

dynamic system and can control by knowing the pattern obtain from observation states. 

What kinds of data need it for the neural network to learn needs to be considered. 

The robots, specifically the mobile robots, have many forms. For grounded 

applications, wheeled robots are the most common. The only needed problem to be 

considered is the kinematics of the robot since four-driven-wheeled robots are 

completely different from two-driven-wheeled robots. Another thing that needs to be 

aware of is the types of wheels used, such as the omnidirectional wheel (mecanum 

wheel). The kinematics of two driven wheels either came with a castor wheel or not. 

Although two driven wheels with a castor are most suitable since are kinematically 

stable two driven wheels without a castor can be stable by applying the control 

systems.  

 

Figure 1.4 Electrical motor modelling 
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Controlling the mobile robot by knowing the kinematics relationship between 

actuator state vector and state vector that can be easily understood such as translational 

or rotational motion, or both. Although simulation of motor behaviour in robotics 

simulation often is unaccountable because there is an issue of dynamical modelling of 

actuation parts, for example, is a misrepresentation of them, which are necessary when 

we want to transfer learned control policies from simulated to real worlds. Some robots 

have embedded with low-level movement and one of them is the Turtlebot3 [8]. This 

robot also comes with simulation as well which is needed for training in the simulation 

since it is much safer and easy to configure. This robot used ROS to communicate all 

different components such as the sensor and actuator. Changing between simulation 

and the real robot can easily change and this option will leave as an option depending 

on the time constraints to carry out this project. The Turtlebot3 has 2 types, which are 

burger and waffle. The burger version is lightweight and easy to control since it 

required only linear and angular velocity for moving forward and backwards, as well 

as rotating left or right at the centre of the wheelbase, b. The equation (1.1) below 

shows the relationship between robot velocity with the velocity of the wheel. 

Transforming from actuator vector to robot local frame vector. The velocity can be 

obtained by reading the wheel velocity but this is taken care of by Turtlebot3 

embedded controller OpenCR board. The equation (1.2) is to convert from local 

coordinates to global coordinates. If the direction of the robot heading is not important, 

the orientation between the global frame and local frame can be discarded. But for 

Turtlebot3, there is a heading, and therefore is better to have this information for neural 

network policy to learn such as the goal heading. All the information in equations (1.1), 

(1.2) is sent to the ROS odometry message such as pose (linear and quaternion), and 

twist (linear and angular) 

  

1 2 1/ 2

1 1

t R

t L

v v

vb b

    
=    

−      

(1.1) 

( )

( )

cos 0

sin 0

0 1

t

t

X
v

Y








   
    

=     
    

    

(1.2) 
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Considering the reality and practical problems when it comes to measuring the 

states may lead to overestimating. The reason for this is because the noise will always 

present that may influence by the environment such as electromagnetic noise, from the 

electric motor from the robot joint and etcetera. This presence of noise can be removed 

by filtering by using a lowpass filter for removing high-frequency noise and a highpass 

filter for removing low-frequency noise. The IMU is known for its high sensitivity 

(prone to high-frequency noise such as large oscillation) and the gyroscope for low 

sensitivity (prone to low frequency such as drifting). Both IMU and gyroscope can 

estimate the states of orientation and this is where sensor fusion came in.  

 

Figure 1.5 Complementary filter 

The sensor fusion like a complementary filter in Figure 1.5 can compensate for 

the weakness of both of these sensors but the filter based on signal processing has some 

drawbacks due to fixed frequency filtering as well as the presence of noise is not 

completely removed. The states can be estimates such as the Kalman filter [9]. The 

Kalman filter takes the consideration of noise by estimating the noise using probability 

such as the gaussian distribution function. Both of these sensors are commonly used 

in robots and this includes the Turtlebot3.  
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Figure 1.6 Kalman filter 

The Figure 1.6 shows that the Kalman filter used the output system and the 

input system to find the optimal states. The Kalman filter is required to know the 

internal states of the system for better estimation. There are also variations of Kalman 

filters like UKF and EKF for example. They work very similarly in a way it can be 

discretized-time and recursive. The Figure 1.7 generalizes the states that are trying to 

estimate. 

 

Figure 1.7 State estimation 

 

Since the neural network is used as a controller, how it is structured is very 

important since it is mapping from observation states to action states. For complex 

problems, a large model such as multimodal normally would be considered but if the 

states from the environment such as Lidar for detecting obstacle as odometry and IMU 

for localization usually a simple that does not require a large model. The model usually 
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processes such as feature extraction known as encoder and from feature space to 

actions is the decoder. The decoder is usually MLP since it can be solved in linear 

regression, hence why it is effective as the decoder. The Figure 1.8 is the autoencoder 

with main used as to remove noise such as salt and pepper noise but generally most 

neural network will have similar block structure. The encoder is usually depending on 

the input size and shape such as if the input is a signal such as a discrete-time signal, 

image, point-cloud, etcetera. 

 

Figure 1.8 Basic structure of the neural network 

 Considering the inputs such as camera, lidar, or both can determine the 

complexity of neural network such as image coming from the camera has large feature 

needs to be reduced but of signal processing such as Lidar can be simple model 

although it may need to be filtered since the presence of noise will contain in the 

measurement. The map of the environment such as the occupancy grid sometimes may 

not be included since is normally not required for a controller such as a reactive 

controller. Using LIDAR and others means of obtaining localization is sufficient to 

serve as a vision for the robot. The equations (1.3) to (1.5) shows the relationship 

between the states and controller output. 

( )1k kv f s+ =  (1.3) 

( ),feature k kx f s v=  (1.4) 

( )1k featurev f x+ =  (1.5) 
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The last that needs to be considered is DRL algorithms since is normally 

depending on the shape of observations and actions. The observation states here can 

be from sensor raw measurement or after applying to filter for noise reduction. For 

robotics control, the actions in DRL are continuous actions because it is a discrete-

time signal with ZOH as shown in equations (1.3) or (1.5). Currently, many studies 

have simplified the problem by combining the states and previous actions such as 

velocity command to compute the Q-value as well as actions command. The algorithm 

that used action as continuous is called policy optimization. The policy or the neural 

network can then be updated or backpropagation. But many algorithms based on policy 

optimization are by using the Actor-Critic architecture and the minimum neural 

network typically used is 2. The Actor is mapping the observation state space to action 

state space and the Critic network is used as a function approximator to compute a 

scalar from action, states, or both.       

1.3 Project Objectives 

The project objectives as stated below are: 

(a) To develop a neural network controller based on the DRL algorithm. 

(b) To implement multi-agents during the training phase. 

(c) To evaluate the robot behaviour’s performance. 

 

1.4 Project Scopes 

The scope of this study is limited to as stated below: 

(d) To explore RL in the context of the control system.  

(e) To train a policy using multiple of the same robots. 

(f) To test the policy after training. 
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1.5 Report Outlines 

This chapter shows brief of history about robotics, especially control system as 

well as RL. It’s also discussed the problem is facing and what sort of approach or 

method is used. Given that a lot of these approach is develop from different fields and 

will have some different in terms of terminology, analysis method, and as well as what 

sort of tools is used. Noted that many of the system can be analysed same way in 

controller system where RL is in computer field. But the similarity is very significant 

despite in different field but different approach which will be discussed in next chapter.    
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