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ABSTRACT

In the construction of low-rise buildings, cold-formed steel (CFS) as column is 
rarely used even though it is an important component. Previous studies have shown 
that the main weakness of CFS is its buckling behaviour due to the thin nature of CFS 
section. By combining multiple similar profiles to form a new profile using self
drilling screw connectors, strong column can be obtained in terms of the cross
sectional capacity and buckling resistance. This research investigates the performance 
of multiple combined profile columns, to obtain the relevant limits for the capacity 
design factor of multiple combined profile sections. To achieve this research aim, 
theoretical analysis and experimental works were carried out based on C7575 C- 
Channel profile. Firstly, the testing of the material properties of the C7575 was 
conducted, to be followed by the analysis and testing of single profile member capacity 
with variations in length of 300, 500, 1000, 1750 and 2500 mm. Then, analysis of the 
combined profiles that comprises of double-back-to-back (dBB), double-lips-to-lips 
(dLL) and double-flange-to-flange (dFF) profiles were performed to obtain the new 
cross-sectional capacity. To obtain the ideal spacing of self-drilling screw connector, 
a compressive test was performed on the combined dFF and combined dBB profiles 
with variations in spacing of 25, 50, 75, 100 and 125 mm using 300 mm length sample. 
The combined dFF and dBB profiles were assembled and arranged to form several 
multiple combination profiles, namely 2dFF, 4dFF, 6dFF, and 8dFF to obtain the 
adequate strength and performance for low-rise building column applications. It is 
found that C7575 profile possess the ultimate strength, fu = 616.27 N/mm2 , yield 
strength, fy = 597.93 N/mm2 , modulus of elasticity, E  = 209 GPa and shear modulus, 
G = 80.38 GPa. It also found that, double-back-to-back (dBB) and double-flange to- 
flange (dFF) are the ideal configurations for multiple combined profiles of CFS. The 
patterns yielded an increase in the cross-sectional capacity with a ratio ranging from
1.7 to 1.8. As for the spacing of screws, the ideal distance for dBB is 75 mm to 125 
mm while for dFF, it is 75 mm to 100 mm. Observations on the performance of the 
eight-double-flange-to-flange (8dFF) multiple combined profile shows that the profile 
did not experience any rotation deformation. In general, the recommended value of 
imperfection factor, a for the C-channel profile type is 0.34 while for other types of 
profile CFS, the value of a can be taken as 0.76. The a value of 0.76 even though it 
produces a match between the results of theoretical and experimental calculations, it 
is too confident for a calculation. Based on the theoretical formulation, it is found that 
a new value of a for 8dFF multiple combined profile is equal to 1.14. This new value 
of a is therefore proposed, to determine the appropriate reduction factors for buckling 
about y  axis, %y and z  axis, %z for the type of 8dFF multiple combined profile. The 
research concluded that 8dFF multiple combined profile can be used efficiently as 
column for low-rise building structure.
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ABSTRAK

Dalam pembinaan bangunan bertingkat rendah, keluli terbentuk sejuk (CFS) 
sebagai tiang jarang digunakan walaupun ianya merupakan komponen yang penting. 
Kajian terdahulu menunjukkan bahawa kelemahan utama CFS adalah kelakuan 
lengkukannya yang disebabkan oleh sifat bahagian CFS yang tipis,. Dengan 
penggabungan dan pemasangan beberapa profil individu yang serupa bagi membentuk 
satu profil baharu menggunakan penyambung skru gerudi-diri, tiang yang memadai 
dapat diperolehi dari segi kapasiti keratan rentas dan rintangan lengkukan. 
Penyelidikan ini bertujuan untuk mengkaji prestasi struktur tiang profil gabungan 
berganda, bagi mendapatkan had yang relevan yang dapat digunakan sebagai faktor 
reka bentuk kapasiti keratan-keratan profil gabungan berganda. Untuk mencapai 
tujuan penyelidikan ini, analisis secara teori dan kerja ujikaji dilakukan dengan 
berdasarkan kepada profil C7575 C-Channel. Pertama, penyiasatan sifat bahan C7575 
dilakukan, diikuti dengan analisis dan pengujian kapasiti anggota profil tunggal 
dengan variasi panjang 300, 500, 1000, 1750 dan 2500 mm. Kemudian, analisis profil 
gabungan C7575 yang terdiri daripada profil double-back-to-back (dBB), double-lips- 
to-lips (dLL) dan double-flange-to-flange (dFF) dilakukan untuk mendapatkan 
kapasiti keratan rentas yang baharu. Dalam pada itu, untuk mendapatkan jarak ideal 
penyambung skru gerudi-diri, ujian mampatan dilakukan pada profil gabungan dFF 
dan gabungan dBB dengan variasi jarak 25, 50, 75, 100 dan 125 mm. Tiga sampel 
dengan panjang 300 mm untuk setiap variasi jarak telah diuji. Selepas itu, gabungan 
profil dFF dan dBB dipasang dan disusun untuk membentuk beberapa profil gabungan 
berganda iaitu 2dFF, 4dFF, 6dFF, dan 8dFF bagi mendapatkan kekuatan dan prestasi 
yang mencukupi untuk aplikasi tiang bangunan bertingkat rendah. Profil C7575 
didapati memiliki kekuatan muktamad, fu = 616.27 N/mm2 , kekuatan alah, fy = 597.93 
N/mm2 , modulus keanjalan, E  = 209 GPa dan modulus ricih, G = 80.38 GPa. Corak 
yang dipilih untuk menggabungkan profil seperti double-back-to-back (dBB) dan 
double-flange-to-flange (dFF) adalah konfigurasi yang sesuai untuk profil gabungan 
berganda CFS. Corak-corak ini menghasilkan peningkatan kapasiti keratan rentas 
dengan nisbah antara 1.7 hingga 1.8. Bagi j arak antara skru pula, j arak yang ideal untuk 
dBB ialah 75 mm hingga 125 mm sementara untuk dFF adalah 75 mm hingga 100 
mm. Pemerhatian terhadap prestasi profil gabungan berganda eight-double-flange-to- 
flange  (8dFF) menunjukkan bahawa profil tersebut tidak mengalami ubah bentuk 
putaran. Secara umum, nilai faktor ketidaksempurnaan, a yang disarankan untuk jenis 
profil C-Channel adalah 0.34 sementara untuk jenis-jenis lain, nilai a boleh diambil 
sebagai 0.76. Nilai a bersamaan dengan 0.76 kelihatan masih dapat menghasilkan 
kesepakatan yang baik antara hasil pengiraan teori dan ujikaji. Walau bagaimanapun, 
melalui proses pengiraan ke belakang, rumusan telah menghasilkan nilai a yang 
baharu untuk profil gabungan berganda 8dFF bersamaan dengan 1.14. Oleh yang 
demikian, nilai a yang baharu ini dicadangkan, dan dapat digunakan untuk 
menentukan factor-faktor pengurangan yang sesuai bagi lengkukan paksi y, %y dan 
paksi z, %z untuk jenis profil gabungan berganda 8dFF. Penyelidikan ini menyimpulkan 
bahawa profil gabungan berganda 8dFF boleh digunakan dengan berkesan sebagai 
tiang untuk struktur bangunan bertingkat rendah.
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CHAPTER 1

INTRODUCTION

1.1 Overview

A cold-formed steel (CFS) section is a type of steel section that has a thin 

profile, which means that the ratio of the width, b, or depth, h, over the thickness, t, of 

the profile is very large. Due to these relatively thin dimensions, the formation of the 

profile can be done using the cold forming process. In this process, the profile is 

formed from a steel plate or sheet into the desired shape at room temperature using a 

rolling machine or plate bending machine (press brake machine). The thickness of the 

plate that serves as the base material for forming the profile usually ranges between

0.4.mm (0.0149 in) and 6.4 mm (0.25 in) (Yu, 2010).

According to Yu (2011), the following qualities of CFS structural members 

distinguish them from other materials such as timber and concrete:

1. High strength, stiffness and lightness

2. Ease of fabrication and mass production

3. Fast and easy erection and installation; elimination of delays due to poor

weather

4. Economic in transportation and handling

5. More accurate detailing and uniform quality

6. Low combustibility and recycled material.

The combination of the above-mentioned advantages can result in cost savings 

in construction.
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Ye et al. (2016) also put forth the same argument that CFS wall systems, which 

have the advantage of being environmentally green and easy to construct, are 

commonly utilised as load-bearing structural components in low-rise and medium-rise 

structures and non-load bearing structural components in other residential, commercial 

and industrial buildings (Ye et al., 2016).

The utilization of CFS as wall-system for residential buildings is already very 

common, especially for single-story buildings (Figure 1.1). Its ease of implementation 

and proven structural strength have made CFS popular nowadays. However, limited 

land for constructing single-story buildings, which CFS is good for, might be the 

greatest obstacle in the effort to meet the housing needs. Due to this limitation, houses 

must be built using the conventional block system. So, the single-story building system 

becomes a multi-story building block system to accommodate growing housing needs.

(a) (b)

Figure 1.1 (a). Wall-system installation (Alliance, 2007), (b). Single story building
(Newfabksa, 2007)

For multi-story building system using CFS, a lot more needs to be done through 

the design manual that describes the structure of CFS. In the manual, it is stated that 

in a multi-story building, CFS is mostly intended to be used as a wall system and floor 

joist system. Meanwhile, for the main structural member, hot-rolled steel is still 

preferable (Lysaght, 2015; AS/NZS-4600, 2005; Australia Building Codes Board, 

2006; Gardner, 2011).
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It is also mentioned that the CFS does not function as the main structure but 

only as a wall-system only. Meanwhile, the main structure still uses a profile that 

serves as a hot-rolled steel framing (Figure 1.2).

The strength of a structure is influenced by the strength of the columns and the 

beams in its structural system. Columns have a more important function than beams in 

maintaining the strength of the structure. The destruction of a column will result in the 

destruction of the whole structure.

(a) (b)

Figure 1.2 (a) A CFS wall system (Alliance, 2007) and (b) a multi-story building
structure used CFS as the wall system’s main structure from steel profiles 
(www.greenmaltese.com).

The use of CFS in structures began to develop due to its light and easy in 

application and adequate strength ( f  = 550 N/mm2), which is greater than that of 

normal hot-rolled steel ( f  = 275 N/mm2). CFS is dominated by plastic behaviour, so it 

needs the strength limit if  used as a structural column. These limits should be clearly 

defined through experimental studies so that CFS can be used as structural columns.

To get cold-formed sections that are suitable as structural columns, innovations 

of CFS materials need to be made through a wide variety of cold-formed profiles. CFS 

profiles will be fabricated and joined together so that the combined profile columns 

could at least withstand the structural loads of low-rise buildings, which experience 

relatively high loads compared to medium- or high-rise buildings.

3

http://www.greenmaltese.com/


A low-rise building in this study means a building that has four or fewer floors, 

as the use of a lift can be avoided in these cases, meaning that the desired effectiveness 

and efficiency of the building can be achieved. Such low-rise buildings are intended 

to be used as a residence or office buildings using a standard design load in accordance 

with the applicable regulations.

1.2 Background of the Study

The use of CFS sections as the main structural elements of a low-rise building 

is worth researching and developing. A column is an interesting subject because it is 

one element that is very important in low-rise buildings. Furthermore, one of the main 

requirements in multi-story buildings is to have strong columns (Dan Dubina, 2012; 

Yu, 1999).

The results of previous research (Figure 1.3) yielded information that CFS- 

based columns exhibit a variety of behaviours when subjected to axial load (Liu et al., 

2017; Bernuzzi and Maxenti, 2015). There are differences in behaviour between single 

profile, double profile, and triple profile CFS-based columns (Madeira et al., 2015; 

Landesmann et al., 2016).

The shape of the single profile changes drastically after reaching the maximum 

axial load. The dominant behaviours on this type of profile are torsion and buckling 

(Figure 1.4). The experimental results have shown that the failure behaviour is torsion, 

followed by buckling, which leads to total collapse on both of the profiles. However, 

it is in contrast to the behaviour of the CFS double profile. This profile does not 

experience a significant torsional behaviour—however, buckling behaviour, which 

leads to a sudden total collapse, becomes the dominant behaviour of the CFS double 

profile.
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Figure 1.3 (a) Stub column test: details on the specimen, (b) the specimen before
testing, and (c) typical failure due to local and distortional buckling (Bernuzzi and 
Maxenti, 2015).

Figure 1.4 (a) Single and triple profile behaviour (torsional buckling dominated)
and (b) double profile behaviour (local buckling dominated)

The results of the current study show that buckling behaviour is the main cause 

of the weakness of the section, especially in open section applications, leading to 

buckling and total collapses. Thus, the research related to the improved behaviour of 

CFS in the form of innovative combinations of CFS column profiles will be highly 

significant and beneficial. Innovation is required in order to reduce the buckling effect 

of the combined section. The proposed innovations of combined profiles to the CFS 

column section member is not only as compression member but also as the column 

structure. Besides, the distance and the strength of the plate stiffener should be detailed
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in order to know the positive contribution of the plate stiffener installation profile on 

the CFS column.

The improved version of the CFS column will resist the low load level of the 

building structure, where the use of hot-rolled steel as columns can be avoided to 

improve the efficiency of low-rise buildings. Surely, this CFS column will provide 

convenience, not only in terms of implementation but also for mobilizing material 

from the manufacturer to the location of the fieldwork.

Additional research and analyses related to the use of CFS have been done. 

Experimental analyses and finite element approaches carried out by Ayhan (2015) and 

Schafer (2015) provide information that slenderness has a significant influence and 

needs to be considered in the usage of CFS in columns.

Some previous research suggests that there are some important things that still 

need to be investigated (C. C. Weng, 1990) regarding the contribution of stiffness to 

the rigidity of compression members. Ye Jihong (2016) found that CFS is still used 

only for single-level residential buildings and not multi-story building systems. 

However, Di Lorenzo et al. (2004) gave classification failures of CFS members that 

can be developed or combined to become strong members. Ayhan et al. (2015) 

commented that finite element analysis can be used to predict the design expression of 

CFS members. Therefore, this information could be used to extend such research to 

produce CFS columns that can carry greater loads, specifically for multi-story 

buildings.

1.3 Problem Statement

Combined profile columns have not been widely studied, especially those 

made of CFS. It is a significant problem to study because this kind of column is made 

from thin steel material and exhibits different behaviours than single profile columns.
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The main problem associated with combined profile columns is that it is 

difficult to increase their resistance capacity and boost supporting parameters so that 

they can withstand the load from the floor above the column. Apart from buckling 

behaviour, column slenderness and spacing between self-drilling screws are important 

in determining the appropriate design of combined columns.

Analytical or theoretical methods may not provide sufficient and reliable 

information about the behaviours of combined profile columns. An experimental study 

is still needed to obtain accurate information based on the performance of combined 

profile columns.

Lastly, another question that arises is ‘How can the capacity of a CFS section 

be increased from a combination of several similar profiles that are assembled into one 

unit with self-drilling screws as connectors in low-rise building structures?’

1.4 Objectives

The aim of this research is to investigate the behaviour of various types of 

columns formed by combining profiles CFS using self-drilling screws as connectors 

fixed along the columns. Subsequently, the objectives of this research can be listed as 

follows:

1. To determine the performance of the combined profile CFS column under

compression.

2. To innovate various types of combined profiles of CFS using self-drilling

screws as connectors between members.

3. To investigate the performance of columns made from a combined profile of

CFS as a column with new parameters for low-rise buildings.
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1.5 Scope of the Study

The present study will combine a model analysis based on a design code and 

an experimental model assessed in the laboratory. The scope of the study is divided 

into several stages:

1. Fundamental analysis and experimental testing of a single profile:

To determine the behaviour of a single profile under compression using 

fundamental theory in CFS design, thus validating and comparing the model 

through experimental testing.

2. Analytical and experimental testing of combined profiles:

To determine the behaviour of combined profiles, local buckling, flexural 

buckling, and torsional buckling.

3. Design and testing of screw connections for various spacing distances:

To determine the suitable spacing between self-drilling screws as connectors 

for combined profile specimens. The arrangement and number of screws will 

be determined based on the code requirements.

4. Full-scale testing of combined profile CFS as a column:

To determine the ultimate strength and failure modes of combined profile CFS 

as a column in the real conditions for a low-rise building structure.
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1.6 Significances and Original Contributions of This Study

The results of this research are expected to illustrate some of the advantages 

and conveniences of using CFS in columns, including:

1. Combined columns provide an alternative to column structure of buildings that 

are conventionally constructed using hot-rolled steel or concrete columns.

2. Combined columns are expected to contribute as a load-bearing structure, 

especially in low-rise buildings.

3. Combined columns meet the guidelines of green buildings because they do not 

use excessive amounts of natural material. Also, waste material can be recycled 

to produce similar materials.

1.7 Organization of Thesis

This thesis is structured as follows: Chapter 2 contains the literature review, 

which covers basic theory and previous studies on CFS— specific topics include CFS 

used in columns, analyses and experiments involving CFS, the strength capacity of 

combined steel sections with screws. The last part of this chapter explains the gap 

identified in the literature. Chapter 3 discusses the analytical theory and stages of the 

experiment and the model test of the combined profile of CFS. Chapter 4 explains the 

mechanical properties of CFS, the experimental test of elasticity modulus, analytical 

experimental results, and chosen material properties that are used on the next stage. 

Then, the performance of combined profile CFS as a compression member is 

discussed— section properties are analysed and experiments are compared to 

determine the performance of combined profile CFS. The use of self-drilling screws 

as connectors for combined profile CFS is also discussed in this chapter. Chapter 5 

presents the applied combined profile CFS as short columns for low-rise buildings, 

full-scale experiments, and analytical results to find the strength capacity of combined 

profile CFS with an adequate reduction factor. Finally, Chapter 6 provides conclusions 

and suggestions for future research.
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L IU , D ., L IU , H ., C H E N , Z . &  L IA O , X . 2 0 1 7 . S tru c tu ra l b e h a v io r  o f  e x tre m e  th ic k -  
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M Y C S I 2 0 1 6 . M y C S I-S p ecsF o rP C F S -F in a l_ R ev5 , M ir i, S a ra w a k  M a la y s ia , M a la y s ia  

C o ld - fo rm e d  S tee l In s ti tu te  (M y C S I).
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(N E W F A B ).

N G U Y E N , V . B ., M Y N O R S , D . J ., W A N G , C . J ., C A S T E L L U C C I, M . A . &  
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D e sig n ,  108 , 2 2 -3 1 .
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E n g in e e r in g .
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