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ABSTRACT 

Cooling fluids have been used successfully in machining processes to suppress tool 

wear, enhance surface quality, and reduce the cutting forces and temperature. However, 

cooling fluids have negative effects on the cost of handling and the environment. Furthermore, 

under Minimum Quantity Lubrication (MQL) conditions, the usage of mineral oil-based 

cooling fluid for hard turning is found to be unsatisfactory. The aim of this study was to 

evaluate the performance of titanium aluminium nitride (TiAlN) coated carbide cutting tool 

(KC5010) when turning martensitic stainless steel (AISI 420) with hardness of 48±1 HRC 

under MQL conditions. The cooling fluid flow rate and air pressure were employed at 50 ml/h 

and 5 bar, respectively. In the first Phase, seven experiments were conducted at medium 

cutting speed and medium feed (135 m/min, 0.20 mm/rev) (MM), under MQL using different 

cooling fluids. The cooling fluids used were paraffin oil and nanofluids consisting of the 

mixtures of paraffin oil with iron oxide (γ-Fe2O3) nanoparticles as well as with nano graphene 

(xGnP). The concentration of nanofluids were 0.40% (1.6g), 0.80% (3.2g), and 1.20% (6.4g) 

by weight of γ-Fe2O3 and xGnP. The sizes of γ-Fe2O3 and xGnP nanoparticles were ≤10 nm, 

and these were separately added to 400g of paraffin oil.  Among others, the evaluation was in 

terms of tool life, surface roughness, cutting forces and vibration. Based on the result of Phase 

1, different cutting parameters were investigated in Phase 2, where MQL using cooling fluid 

consisting of a mixture of paraffin oil and 0.80% wt γ-Fe2O3 was selected for further 

investigation. This concentration of nanofluid performed best in terms of tool life, surface 

roughness, vibration and cutting forces when compared to the other cooling fluids investigated 

in Phase 1. The tool life improvement was 47.5% and 46.8% compared to paraffin oil and 

xGnP nanofluid, respectively. Surface roughness was enhanced by 83.3% and 44.4% 

compared to paraffin oil and xGnP nanofluid conditions, respectively. The vibration level 

decreased by 33.5% when using 0.80% wt γ-Fe2O3 compared to 0.40% wt xGnP, and cutting 

forces (feed force) were reduced by 4.6% and 46.2% compared to paraffin oil and xGnP 

nanofluid conditions, respectively.  The cutting conditions investigated in Phase 2 were low 

(L), medium (M) and high (H) combinations of cutting speeds (100, 135 and 170 m/min) and 

feed rates (0.16, 0.20 and 0.24 mm/rev). This involved a further eight experimental conditions 

(i.e. LL, LM, LH, ML, MH, HL, HH, and HM). The eight experimental conditions, when 

combined with the MM condition of Phase 1 results in a two-factor, three-level full factorial 

design with two center points. In Phase 2, better surface roughness and lower cutting forces 

were obtained at LH. However, the longest tool life and the highest material removal rate were 

obtained at a low cutting speed and feed rate. A combination of adhesion wear and abrasion 

wear was the dominant wear mechanisms. Catastrophic failure occurred at high cutting speed 

and feed rate, resulting in the shortest tool life among all experiments. The flank and crater 

wears were dominant at low and medium cutting speeds and feed rates. Continuous chips were 

observed at low speed and saw tooth chip at high feed rate. Empirical models for the various 

machining responses were developed and these were used to determine the optimum process 

parameters within the limits investigated. 
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ABSTRAK 

        Bendalir penyejuk telah berjaya digunakan dalam proses pemesinan untuk mengurangkan 

kadar kehausan mata alat, meningkatkan kualiti permukaan, dan mengurangkan daya dan suhu 

pemotongan. Walaupun begitu, bendalir penyejuk mempunyai kesan negatif terhadap kos 

pengendalian dan persekitaran. Tambahan pula, penggunaan bendalir penyejuk berasaskan 

minyak galian untuk melarik keras, dalam keadaan Kuantiti Pelinciran Minimum (MQL) 

adalah sangat tidak memuaskan. Kajian ini dijalankan bertujuan untuk menilai prestasi alat 

pemotong bersalut karbida TiAlN (KC5010) semasa melarik keluli tahan karat martensit (AISI 

420) dengan kekerasan 48±1 HRC dalam keadaan MQL. Kadar aliran dan tekanan udara 

bendalir penyejuk yang digunakan masing-masing pada 50 ml/jam dan 5 bar.  Pada Fasa 1, 

tujuh eksperimen dijalankan pada kelajuan pemotongan dan kadar suapan sederhana (135 

m/min, 0.20 mm/rev) (MM) dalam keadaan MQL menggunakan bendalir penyejuk yang 

berbeza. Bendalir penyejuk yang digunakan adalah minyak parafin dan nanobendalir yang 

terdiri dari campuran minyak parafin dan nanozarah besi oksida (γ-Fe2O3) dan juga 

nanographene (xGnP). Kepekatan nanobendalir ialah 0.4% (1.6g), 0.8% (3.2g), dan 1.2% 

(6.4g) secara berat γ-Fe2O3 dan xGnP. Ukuran γ-Fe2O3dan xGnP ialah ≤10 nm dan nanozarah 

ini ditambahkan secara berasingan kepada 400g minyak parafin. Antara lain, penilaian 

dilakukan dari segi hayat mata alat, kekasaran permukaan, getaran dan daya pemotongan. 

Berdasarkan keputusan Fasa 1, parameter pemotongan berbeza telah dijalankan di dalam Fasa 

2, yang mana bendalir penyejuk MQL terdiri daripada campuran minyak parafin dan 0.8% wt 

γ-Fe2O3.  Nanobendalir pada kepekatan ini memberi keputusan terbaik dari segi jangka hayat 

mata alat, kekasaran permukaan, getaran dan daya pemotongan berbanding dengan bendalir 

penyejuk lain yang dikaji dalam Fasa 1. Peningkatan hayat mata alat adalah masing-masing 

47.5% dan 46.8% berbanding minyak parafin dan nanobendalir xGnP. Kekasaran permukaan 

dapat ditingkatkan sebanyak masing-masing 83.3% dan 44.4% berbanding dengan minyak 

parafin dan nanobendalir xGnP. Kadar getaran pula menurun sebanyak 33.5% ketika 

menggunakan 0.8% wt γ-Fe2O3 dibandingkan dengan 0.4% xGnP dan daya pemotongan (daya 

suapan) dikurangkan sebanyak masing-masing 4.6% dan 46.2% berbanding dengan minyak 

parafin dan nanobendalir xGnP.  Keadaan pemotongan yang diteliti untuk Fasa 2 adalah pada 

tahap rendah (L), sederhana (M) dan tinggi (H) bagi kombinasi kelajuan pemotongan (100, 

135 dan 170 m/min) dan kadar suapan (0.16, 0.20 dan 0.24 mm/rev). Ini melibatkan lapan 

eksperimen tambahan (iaitu LL, LM, LH, ML, MH, HL, HH dan HM).  Lapan keadaan 

eksperimen ini bila digabung dengan keadaan MM dari Fasa 1 menghasilkan reka bentuk 

faktoran penuh 3-tahap dengan 2 titik tengah yang melibatkan 2 faktor. Pada Fasa 2, kekasaran 

permukaan yang lebih baik dan daya pemotongan yang lebih rendah didapati pada LH. Walau 

bagaimanapun, hayat mata alat terpanjang dan kadar penyingkiran bahan tertinggi diperoleh 

pada kelajuan pemotongan dan kadar suapan yang rendah. Kombinasi kehausan rekatan dan 

kehausan lelasan merupakan mekanisma haus yang dominan. Kegagalan bencana berlaku pada 

kelajuan pemotongan dan kadar suapan tinggi yang mengakibatkan hayat alat yang terpendek 

di semua eksperimen. Kehausan rusuk dan kehausan kawah adalah mod kegagalan alat yang 

dominan pada kelajuan pemotongan dan kadar suapan rendah dan sederhana. Serpihan 

berterusan diperhatikan pada kelajuan rendah dan serpihan berbentuk gigi gergaji pada suapan 

tinggi. Model empirikal telah dibangunkan untuk pelbagai respon pemesinan dan ia dapat 

digunakan untuk menentukan parameter proses yang optimum dalam had yang dikaji.  
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INTRODUCTION 

 Background of the Study 

Machining is described as the removal of a thin layer of material from a larger 

body by a cutting tool. In various cutting processes, raw materials are converted to 

finished shapes by controlling the removal of materials to obtain the finished 

manufactured products (Trent and Wright, 2000). The manufacturing efficiency is 

measured by several factors, including obtaining a smooth surface for the final 

products and by increasing the tool life (Rapeti et al., 2018). Machining processes 

primarily includes turning, milling, and drilling. The turning process has been further 

classified based on the hardness s of materials to be machined. Hard turning is one 

such classification which typically refers to the processing of materials with hardness 

values of over 45 HRC but typically in the 58-68 HRC range.  

The past decades have seen an increase in the development of applications 

involving machining high-performance materials. The operating characteristics 

especially the poor machinability and the heat generated pose great challenges. Heat 

is generated less when machining low-strength materials and alloys, while more heat 

is generated when machining high-strength alloys (Jeet and Kar, 2018). The rise of 

temperature is an essential factor and it has a direct effect on the cutting process and 

the quality of the surface, which consequently affects the production processes and 

energy consumption (Said et al., 2019). 

Stainless steel has mechanical and metallurgical properties such as high 

resistance to corrosion, so it is used in wide range of applications such as the fields of 

medicine, aerospace and automotive structures (Huang et al., 2018). This type of 

stainless steel is known as martensitic and has excellent characteristic of toughness 
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and strength which is used in various applications such as nuclear industry, oil 

industry, and aviation industry (Cao et al., 2020). 

Generally, advanced cutting tools such as cubic boron nitride (CBN), 

polycrystalline cubic boron nitride (PCBN) and ceramic tools are used during hard 

turning process. These tools are however expensive. When turning materials with 

hardness less than 50 HRC, many researchers have also reported the successful use of 

coated carbide tool when turning martensitic stainless steel under the dry condition 

(Elmunafi et al., 2015a, Elmunafi et al., 2015b, Elshwain et al., 2017, Noordin et al., 

2007). Examples of coatings applied on carbide tools include titanium nitrate (TiN), 

titanium aluminium nitride (TiAlN), alumina (Al2O3), titanium carbonitride (TiCN), 

and titanium carbide (TiC) (Kang et al., 2008). This augurs well for hard turning as 

coated carbide tools are relatively cheaper compared to the advanced cutting tools 

mentioned above. Further Elshwain et al. (2017) reported that turning a hardened 

American Iron and Steel Institute (AISI) AISI 420 stainless steel (48±1 HRC) and the 

tool life appreciably prolonged under nitrogen-oil-mist machining condition compared 

with dry and air-oil-mist cutting conditions. 

Driven by demands for higher quantity production, machining should be done, 

wherever possible, at high cutting speeds and feed rates. To decrease the generated 

temperature, it becomes essential to utilize cooling fluids during machining operations. 

Cooling fluids have been widely used in several machining techniques for their ability 

to increase tool life and improved the quality of machined surface but unfortunately, 

they create serious problems of environmental hazards and pollutions (Khan and Dhar, 

2006). Moreover, during the machining operation, numerous actions should be taken 

to reduce the risks of cooling fluids. In recent years, techniques such as minimum 

quantity lubrication (MQL) were investigated and better machining performance than 

dry and wet cutting is obtainable. 

The MQL technique, is a near dry machining, that reduces the application of 

cooling liquids by spraying optimized mixture of cooling liquid and compressed air 

into the cutting zone instead of flood cooling (Su et al., 2016). Rahim et al. (2015) 

stated that the MQL technique using vegetable oil achieved better performance than 
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dry cutting which reduced the temperature and cutting force. Previous research works 

indicate that the MQL is useful to improve the cutting process compared to dry 

machining and flood cooling (Srikant et al., 2014). MQL technique was utilized to 

reduce excessive wear than end milling martensitic stainless steel which has resulted 

in less wear and friction due to good cooling effect provided (Sadiq et al., 2017). 

The application of nanofluids led to a reduction in energy consumption and 

friction between the tool and workpiece thus enabling to prolong the tool life which 

enhanced the quality of surface and improved machining productivity (Shokoohi and 

Shekarian, 2016). Nanofluids also enhanced the base fluid’s tribological properties, 

because of its high thermal conductivity characteristic. It leads to a decrease in the 

temperature during cutting operations and maintains the viscosity of the oils (Su et al., 

2016). The nanofluids have gained considerable interest owing to their potentials to 

enhance lubrication performance and heat transfer (Sidik et al., 2017). The graphite 

nanofluids with vegetable oil tribological properties were investigated using a wear 

and friction tester (Sayuti et al., 2014). Nanofluids have high thermal conductivity 

property, thus promoting better heat transfer and improve viscosity which is also an 

excellent characteristic with lubrication (Gaurav et al., 2020). Much research has been 

examined involving dry, flood and MQL using vegetable oil when machining various 

stainless-steel workpiece. However with mineral oil there are not so many studies 

being carried out with martensitic steel especially when using coated carbide cutting 

tool. 

 Problem Statement 

The dry hard turning process using coated carbide tool is only suitable for 

machining martensitic stainless steel AISI 420 at low cutting speed and feed (100 

m/min, 0.16 mm/rev) (Elmunafi et al., 2015a). At medium and high cutting speeds and 

feeds, dry hard turning results in low tool life. This is because of the excessive heat 

being generated at the cutting zone due to its low thermal conductivity (Guo and Sahni, 

2004, Elmunafi et al., 2015c). As a result of these numerous applications of the dry 
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hard turning process, the use of a cooling fluid was found to be necessary in order to 

reduce the temperature created during turning. 

The MQL technique is an alternative cooling technique to dry or flood cooling 

when machining hardened materials. According to previous reports, the use of 

vegetable lubricant as a turning cooling fluid has been investigated (Elmunafi et al., 

2015a). The study revealed vegetable lubricant has low thermal stability and high cost 

compared their mineral counterpart. Furthermore, significant surface roughness and 

short tool life have been noted as the disadvantages of using vegetable fluid, when 

blended with γ-Fe2O3. Although the inclusion of the γ-Fe2O3 enhanced the machining 

process efficiency and reduces the hazards on the operators thereby improving the 

working environment but it is still not satisfactory. Therefore, the application of high 

thermal stability paraffin lubricant with γ-Fe2O3 and graphite (xGnP) nanoparticles 

additive require investigation since they have good tribological characteristics which 

is desired during turning. This technique is quite simple and can be easily conducted. 

It has been established that vibration has significant impact on surface roughness, 

cutting force and tool life. Despite the severe effects of vibration, previous studies did 

not consider it as a response while turning martensitic stainless steel with a coated 

carbide cutting tool which was explored in this present study (Swain et al., 2018). In 

the machining of martensitic stainless steel AISI 420, it is necessary to investigate the 

potential of nanofluids at various concentration levels.  

 Objectives 

The main objective of this research is to evaluate the effects of MQL based 

nanofluids at varying concentration levels when hard turning martensitic stainless-

steel using TiAlN coated carbide cutting tools. The specific objectives of the present 

study are as follows: 

1. To determine the tribological enhancement of γ-Fe2O3 and xGnP nanoparticles 

in base paraffin oil. 
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2. To evaluate the effect of different concentrations of paraffin oil added with 

nanoparticles on the turning performance of martensitic stainless steel under 

MQL condition. 

3. To investigate the performance of the best-performing cooling fluid under 

various cutting speeds and feed rates in terms of turning responses. 

4. To develop mathematical models for each response considering the feed rate 

and cutting speed with a view of optimizing the cutting parameters. 

 Scope of the Study 

Several cooling techniques are available for turning processes. The scope of 

this study is to evaluate various machinability performance under various 

concentrations of γ-Fe2O3 and xGnP nanofluids using the MQL system with paraffin 

oil as a base fluid. The concentrations level of nanofluids are 0.40, 0.80, and 1.20 by 

weight % of γ-Fe2O3 and xGnP, respectively. When using MQL, the cooling fluid flow 

rate and air pressure were kept at 50 ml/h and 5 bar, respectively. The selected 

workpiece material was hardened AISI 420 and TiAIN coated carbide was used as a 

cutting tool. Out of the many responses that can be evaluated, the tool life, surface 

roughness, and cutting force as well as vibration were selected and used to evaluate 

the performance of the nanofluids in the turning process. The experiments of this study 

were carried out under various cutting speeds and feed rates (100, 135, and 170 m/min) 

and (0.16, 0.20, and 0.24 mm/rev) respectively, but the depth of cut was kept 0.20 mm 

for all experiments. 
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 Significance of the Study 

For decades now, excessive heat generation at the cutting zone has been a 

serious concern using MQL technique. As a result, researchers have come up with 

application of different cooling medium to control the friction and wear caused by 

heat. Application of both air, water and different oils have been investigated as an 

approach of minimizing the friction during turning process; however, the results seems 

insufficient. Using nanofluids as cooling liquids during the turning process reduces 

friction, cutting force, and cutting temperature, improved surface smoothness, 

increased tool life, and minimized chatter. This research explores the use of different 

concentration of xGnP and γ-Fe2O3 nanoparticles blended in paraffin oil as cooling 

fluids when turning hardened stainless steel using coated carbide cutting tools under 

the MQL technique. The addition of nanoparticles is expected to improve the 

tribological properties of the base oil, which in turn enhances the cutting parameters 

compared to base paraffin oil. In the manufacturing industries that use hardened 

materials, it is also expected that the best concentration of nanofluids with paraffin oil 

can improve the cutting condition, leading to better geometry, increased environmental 

friendliness, improved surface roughness, time savings, and cost reduction. Finally, 

paraffin oil with nanoparticles was anticipated to be beneficial in producing a 

sustainable machining environment and consequently provides a better alternative to 

conventional cooling liquids in machining processes. Further, the mathematical model 

to be developed will enable the prediction of the responses investigated for any 

conditions within the boundary of the research conducted.
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