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ABSTRACT

An essential part of a mini-hydropower system is the conversion of low-head 

potential energy into kinetic energy to drive power turbines. One way of converting 

low-head potential energy is using a gravitational water vortex power plant (GWVPP). 

However, the eciency at this very low-head is still low. Therefore, this research focused 

on two fronts: (1) to optimize the vortex pool so as to increase the eciency of transfer of 

potential energy to kinetic energy by using the natural vortex and articially augmented 

vortex and, (2) to design a turbine to obtain maximum power from such low kinetic 

and potential energy. This work dealt with the optimization of the vortex pool to 

improve energy conversion and hence, generate electricity from a very low operating 

head of 0.2 m to 0.3 m. For this purpose, a numerical and experimental studies were 

carried out to investigate the vortex ow characteristics in a gravitational water vortex 

system in the absence and presence of a water turbine. The commercial Computational 

Fluid Dynamics (CFD) software ANSYS Fluent was used to investigate the optimum 

conguration of the vortex pool system. Moreover, an experimental test rig was set up 

to validate CFD results. The results of the validation demonstrated that ANSYS Fluent 

can model the system correctly. The Reynolds Stress model showed better results 

than K -  e and K -  w models in predicting the vortex ow structure. A parametric 

study was carried out using the software to determine the main parameters aecting 

the eciency of energy conversion. Two dierent turbines were tested experimentally, 

revealing that the curved blade turbine was more ecient than the crooked blade turbine 

by 18%. Finally, six rectangular vanes were used to guide the ow for enhancing system 

eciency. Hence, a 50% increment in system eciency was recorded. The maximum 

eciency of the cylindrical pool system with six vanes was about 54%. This system has 

broad applications in low-head cases such as streams, small rivers, irrigation canals, 

wastewater, and rainwater harvesting systems. This system can provide rural and remote 

communities with an economical green source of energy.
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ABSTRAK

Satu bahagian penting daripada sistem tenaga hidro mini adalah pertukaran 

tenagakeupayaan turus-rendah ke tenagakinetik untuk menjalankan turbin kuasa. Salah 

satu cara menukar tenaga keupayaan turus-rendah ialah menggunakan air graviti loji 

janakuasa pusaran (GWVPP). Namun, kecekapan di turus-rendah adalah masih rendah. 

Oleh itu, kajian ini tertumpu kepada dua bidang, pertama untuk mengoptimumkan 

kolam pusaran GWVPP untuk meningkatkan kecekapan pemindahan tenaga keupayaan 

kepada tenaga kinetik dengan menggunakan pusaran semulajadi dan seterusnya 

diperbesarkan. Kedua, merekabentuk turbin dengan mendapatkan kuasa maksimum 

dari tenaga kinetik dan keupayaan yang rendah. Kajian ini menumpukan kepada 

pengoptimuman kolam pusaran untuk meningkatkan penukaran tenaga dengan menjana 

elektrik dari turus operasi rendah iaitu antara 0.2 m hingga 0.3 m. Untuk tujuan 

ini, kajian kaedah berangka dan eksperimen telah dijalankan untuk mengkaji ciri- 

ciri pusaran dalam sistem pusaran air graviti dalam keadaan ada dan tiada turbin 

air. Perisian komersial Dinamik Bendalir Perkomputeran (CFD) ANSYS Fluent telah 

digunakan untuk mengkaji kongurasi sistem pusaran optimum. Di samping itu, 

sebuah pelantar ujikaji telah dibina untuk mengesahkan keputusan CFD. Keputusan 

menunjukkan bahawa ANSYS Fluent berupaya memodelkan sistem dengan betul. 

Model tekanan Reynolds menunjukkan keputusan yang lebih baik daripada model 

K -  e dan K -  w dalam meramal struktur aliran pusaran. Satu kajian parametrik 

telah dijalankan dengan menggunakan perisian untuk menentukan parameter utama 

yang mempengaruhi kecekapan penukaran tenaga. Dua turbin yang berbeza telah 

diuji secara eksperimen dan mendapati bahawa turbin bilah melengkung adalah lebih 

cekap sebanyak 18% berbanding turbin bilah crooked.. Enam bilah segi empat tepat 

telah digunakan untuk mengarah aliran dalam meningkatkan kecekapan sistem. Oleh 

itu, peningkatan 50% dalam kecekapan sistem direkodkan. Kecekapan maksimum 

sistem kolam berbentuk silinder dengan enam bilah adalah kira-kira 54%. Sistem ini 

mempunyai aplikasi yang luas dalam keadaan turus-rendah, misalnya aliran, sungai 

kecil, tali air, air sisa, dan sistem air hujan. Sistem ini boleh menyediakan komuniti 

luar bandar dan terpencil dengan sumber tenaga hijau yang ekonomik.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The search for renewable energy sources like wind power, hydropower and 

solar energy as alternatives for power generation arose as a response to the social, 

economic and environmental complications of using fossil fuels (Kaldellis etal., 2013). 

Moreover, nowadays, many developing countries are encountering an energy crisis due 

to the increase in industrialization for development programs. If this excess demand 

is supplied from fossil fuels, it will harm the environment. Consequently, exploring 

renewable energy resources is now necessary for sustainable energy in order to balance 

the 70 % increase in electricity demand all over the world, to comply with the needs 

of rapid growth of electricity, as well as to reduce CO2 impact on the environment 

(Lahimer et al., 2012).

Renewable energy development in Malaysia is still in its primary stage. Hashim 

and Ho (2011) estimated that utilization of 5% of renewable energy for five years will 

save the country RM 5 billion (U S $ 1.32 billion). Subsequently, according to the 

Tenth Malaysia Plan (2011-2015), the expansion of research into green technology is 

encouraged via commercialization through proper mechanisms such as in (Chua and 

Oh, 2010).

In this trend, Khan et al. (2009) considered energy in flowing river streams, 

tidal currents, or other artificial water channels as an appropriate source of renewable 

power. Malaysia is generating 18,500 MW from hydropower, and 30.3 MW of mini­

hydropower is under construction, with 490 MW is expected by 2020. Although 

real potential is expected for micro-hydropower, it is not fully utilized (Ahmad et 

al., 2011). Furthermore, Malaysia Energy Centre’s National Energy Balance expects 

mini-hydropower to reach 500 MW (Oh et al., 2010).
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Micro-hydro power plants can provide electricity to remote communities. Many 

installations have been implemented worldwide, mostly in developing countries. They 

can be a clean, economical source of energy without the need for fuel (Sopian et al., 

2011). Utilizing a 10 KW mini-hydropower system can remove one thousand gallons 

of diesel fuel per year (Ong et al., 2011). Moreover, small hydropower is supported 

by international efforts to decrease greenhouse gasses' effects on the environment 

(Sipahutar et al., 2013). Furthermore, improving hydropower and small hydropower 

(SHP) plants is considered as a high potential source of renewable energy resources 

(Sharma et al., 2013).

Khan et al. (2009a) divided hydrokinetic energy conversion into two categories: 

turbine and non-turbine systems, as shown in Figure 1.1 and Figure 1.2, respectively. 

Figure 1.1 (a) shows a venturi, which is a chocking system that results in water 

acceleration. This water will then turn a turbine. In Figure 1.1 (b), a vertical axis 

turbine is driven by an artificial vortex. Figure 1.2 (a), Vortex Induced Vibration for 

Aquatic Clean Energy (VIVACE), the flowing current passing through cylinder forms 

a vortex in the downstream. Vortex shedding alternates from one side to another, 

causing the cylinder to oscillate. The energy produced by the cylinder's movement is 

then converted to electricity. Figure 1.2 (b) displays a Seasnail device where a vertical 

oscillation of hydrofoil is capable of generating pressurized fluids, which can be utilized 

in turbine rotation.

Presently, various turbine concepts and designs are being implemented 

extensively, whereas non-turbine systems are generally at the proof-of-concept stage 

(with some exceptions). Therefore, turbine systems are given more attention as 

they are the most promising for deployment (Khan et al., 2009a). One turbine 

system technique is Gravitational Water Vortex Power Plant (GWVPP). This system is 

capable of generating electricity from low heads 0.7m to 3 m and can be applied in 

mini/micro hydropower plants (Wanchat and Suntivarakorn, 2012). This system also 

has broad applications in low-head cases such as streams, small rivers, irrigation canals, 

wastewater and rainwater harvesting systems (Mohanan, 2016).
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Figure 1.1 Examples of turbine systems (a) HydroVenturi TM; (b) (GWVPP) TM. 
(Khan et al., 2009a)

Figure 1.2 Examples of non-turbine systems (a) VIVACE ™; (b) Seasnail ™. (Khan 
et al., 2009a)

GWVPP utilizes the available energy in the gravitational vortex, which is usually 

generated in a circular pool with a tangential inlet and an outlet at the bottom center, as 

shown in Figure 1.3. The energy produced by the vortex is captured by a vertical axis 

turbine employed in the center of the pool, at the vortex core where the rotational speed 

is maximum. The turbine rotates with the swirling flow, thus generating mechanical 

power which is converted into electrical energy by means of an alternator.
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)

Figure 1.3 Schematic of GWVPP (Power et al., 2016)

1.2 Problem Statement

In GWVPP, the hydrostatic head is low. However, it has been shown that using 

the natural gravitation vortex formed in nature will enable us to extract more energy, 

even at low heads. However, the efficiency is still very low. Therefore, there is a

need to improve the efficiency by carrying out research on two fronts. First, we must

optimize the vortex pool for GWVPP in order to increase the efficiency of transfer from 

potential energy to kinetic energy, using the natural vortex and artificially augmented 

vortex. Secondly, the turbine must also be optimized to obtain maximum power from 

such low kinetic and potential energy.

The goal of this research is to investigate the optimum configuration of the 

GWVPP and design the appropriate turbine so that the maximum power can be 

generated.

1.3 Research Objectives

The specific objectives of this research are to:

i. Determine critical parameters in strengthening Free Surface Vortex.
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ii. Optimize the vortex pool to increase the kinetic energy.

iii. Select suitable turbine parameters for efficient GWVPP.

iv. Assess the performance of the new vortex system.

1.4 Research Scope

In this thesis, vortex pool configuration has been studied from the fluid 

mechanic's point of view to capture as much kinetic energy as possible from the 

water vortex flow. The challenge is to increase the system efficiency while maintaining 

a very low operating head of 0.2-0.3 m and a flow rate of 0.028-0.064 m3/s. The 

range of channel width to the pool diameter ratio studied was between 0.1-0.4. As for 

the orifice diameter to the basin diameter, it was in the range of 0.16-0.2. Finally, a 

swirling device is employed in the pool, to enhance the energy conversion in the vortex 

pool. This idea is a new approach in the mini/ micro hydropower generation fields.

The optimum parameters of the GWVPP were analyzed and determined using 

CFD. Then, the system prototype had been fabricated for experimental testing.

1.5 Research Significance

This study begins with reviewing hydrodynamics of turbomachinery, examining 

various designs of water turbines, and using Computational Fluid Dynamics for 

optimizing the turbine parameters. It will determine the parameters which can be 

used by CFD to improve the water vortex kinetic energy like vortex configuration, 

water head, and diameter of orifice, inlet and outlet conditions. The Malaysian climate 

is taken into consideration in this research to provide small communities with green 

economic energy.

1.6 Dissertation Organization

This dissertation is organized as follows.

Chapter 2 reviews related works to Gravitational Water Vortex Power Plant 

(GWVPP). It is divided into three sections: the first section reviews the Free Surface 

Vortex (FSV) flow showing the different aspects of this phenomenon, the second section

5



summarizes the relevant findings to GWVPP, and the last one surveys various designs 

of turbines and their performance.

Chapter 3 describes the methodology. It includes five stages. The first stage is 

the determination of the parameters affecting the performance of GWVPP. The second 

stage is to optimize the affecting parameters to improve energy conversion. In the third 

stage, the effect of installing swirling devices in the vortex pool on the system efficiency 

is numerically investigated. Finally, an experimental study for the employment of two 

different turbines and system validation are presented.

Chapter 4 presents results and discussions of the five stages. The first one 

shows the results of the vortex pool parametric study in the absence of turbine, and its 

validation. The second one is vortex pool configuration and parameters optimization 

in the presence of turbine. The third is the results of the novel approach of installing a 

swirling device in the GWVPP vortex pool. The fourth one is a comparison between 

curved and crooked turbines. Finally, the validation and analysis of the results.

Finally, Chapter 5 presents the conclusions drawn from the numerical simulation 

and experimental testing of GWVPP vortex pool. Moreover, recommendations for 

future studies in GWVPP have also been presented.
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