PERFORMANCE OF GRAVITATIONAL WATER VORTEX ENERGY SYSTEM

HOSAM SHABARA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> School of Mechanical Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > JANUARY 2020

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother, who taught me that even the largest task can be accomplished if it is done one step at a time.

ACKNOWLEDGEMENT

First and foremost, I would like to thank Almighty Allah, the Beneficent, the most Merciful, who bestowed me with the strength and courage to complete the study.

I would like to express my sincere gratitude to my advisors Prof. Omar Bin Yaakob and Dr. Yasser Mohamed Ahmed for their continuous support of my PhD study and related research, as well as for their patience, motivation, and immense knowledge. Their guidance helped me through all the time of research and writing of this thesis. I could not have imagined having better advisors and mentors for my PhD study.

I would like to thank my family: my parents and my wife and children for supporting me spiritually throughout the writing of this thesis and my life in general.

I am also thankful to my colleagues and friends for their support and who made the tenure of this study quite lively.

I would also like to thank the developers of the utmthesis LATEX project for making the thesis writing process a lot easier for me. Thanks to them, I could focus on the content of the thesis and not waste time with formatting issues.

I would like to thank Universiti Teknologi Malaysia (UTM) for giving me the opportunity to accomplish my PhD study through the laboratory facilities and library.

Finally, I wish to express my deepest gratitude and sincerest appreciation to all those who offered me advice and suggestions.

ABSTRACT

An essential part of a mini-hydropower system is the conversion of low-head potential energy into kinetic energy to drive power turbines. One way of converting low-head potential energy is using a gravitational water vortex power plant (GWVPP). However, the eciency at this very low-head is still low. Therefore, this research focused on two fronts: (1) to optimize the vortex pool so as to increase the eciency of transfer of potential energy to kinetic energy by using the natural vortex and articially augmented vortex and, (2) to design a turbine to obtain maximum power from such low kinetic and potential energy. This work dealt with the optimization of the vortex pool to improve energy conversion and hence, generate electricity from a very low operating head of 0.2 m to 0.3 m. For this purpose, a numerical and experimental studies were carried out to investigate the vortex ow characteristics in a gravitational water vortex system in the absence and presence of a water turbine. The commercial Computational Fluid Dynamics (CFD) software ANSYS Fluent was used to investigate the optimum conguration of the vortex pool system. Moreover, an experimental test rig was set up to validate CFD results. The results of the validation demonstrated that ANSYS Fluent can model the system correctly. The Reynolds Stress model showed better results than $K - \varepsilon$ and $K - \omega$ models in predicting the vortex ow structure. A parametric study was carried out using the software to determine the main parameters aecting the eciency of energy conversion. Two dierent turbines were tested experimentally, revealing that the curved blade turbine was more ecient than the crooked blade turbine by 18%. Finally, six rectangular vanes were used to guide the ow for enhancing system eciency. Hence, a 50% increment in system eciency was recorded. The maximum eciency of the cylindrical pool system with six vanes was about 54%. This system has broad applications in low-head cases such as streams, small rivers, irrigation canals, wastewater, and rainwater harvesting systems. This system can provide rural and remote communities with an economical green source of energy.

ABSTRAK

Satu bahagian penting daripada sistem tenaga hidro mini adalah pertukaran tenaga keupayaan turus-rendah ke tenaga kinetik untuk menjalankan turbin kuasa. Salah satu cara menukar tenaga keupayaan turus-rendah ialah menggunakan air graviti loji janakuasa pusaran (GWVPP). Namun, kecekapan di turus-rendah adalah masih rendah. Oleh itu, kajian ini tertumpu kepada dua bidang, pertama untuk mengoptimumkan kolam pusaran GWVPP untuk meningkatkan kecekapan pemindahan tenaga keupayaan kepada tenaga kinetik dengan menggunakan pusaran semulajadi dan seterusnya diperbesarkan. Kedua, merekabentuk turbin dengan mendapatkan kuasa maksimum dari tenaga kinetik dan keupayaan yang rendah. Kajian ini menumpukan kepada pengoptimuman kolam pusaran untuk meningkatkan penukaran tenaga dengan menjana elektrik dari turus operasi rendah iaitu antara 0.2 m hingga 0.3 m. Untuk tujuan ini, kajian kaedah berangka dan eksperimen telah dijalankan untuk mengkaji ciriciri pusaran dalam sistem pusaran air graviti dalam keadaan ada dan tiada turbin air. Perisian komersial Dinamik Bendalir Perkomputeran (CFD) ANSYS Fluent telah digunakan untuk mengkaji kongurasi sistem pusaran optimum. Di samping itu, sebuah pelantar ujikaji telah dibina untuk mengesahkan keputusan CFD. Keputusan menunjukkan bahawa ANSYS Fluent berupaya memodelkan sistem dengan betul. Model tekanan Reynolds menunjukkan keputusan yang lebih baik daripada model $K - \varepsilon$ dan $K - \omega$ dalam meramal struktur aliran pusaran. Satu kajian parametrik telah dijalankan dengan menggunakan perisian untuk menentukan parameter utama yang mempengaruhi kecekapan penukaran tenaga. Dua turbin yang berbeza telah diuji secara eksperimen dan mendapati bahawa turbin bilah melengkung adalah lebih cekap sebanyak 18% berbanding turbin bilah crooked. Enam bilah segi empat tepat telah digunakan untuk mengarah aliran dalam meningkatkan kecekapan sistem. Oleh itu, peningkatan 50% dalam kecekapan sistem direkodkan. Kecekapan maksimum sistem kolam berbentuk silinder dengan enam bilah adalah kira-kira 54%. Sistem ini mempunyai aplikasi yang luas dalam keadaan turus-rendah, misalnya aliran, sungai kecil, tali air, air sisa, dan sistem air hujan. Sistem ini boleh menyediakan komuniti luar bandar dan terpencil dengan sumber tenaga hijau yang ekonomik.

TABLE OF CONTENTS

TITLE

PAGE

	DECI	LARATIO	Ν	iii
	DEDI	CATION		iv
	ACKN	NOWLED	GEMENT	v
	ABST	FRACT		vi
	ABST	'RAK		vii
	TABL	LE OF CO	NTENTS	viii
	LIST	OF TABL	ES	xii
	LIST	OF FIGU	RES	xiii
	LIST	OF ABBR	REVIATIONS	xviii
	LIST	OF SYMI	BOLS	XX
	LIST	OF APPE	NDICES	xxii
CHAPTER 1	INTR	ODUCTIO	ON	1
	1.1 Research Background			1
	1.2	Problem	n Statement	4
	1.3	Researc	ch Objectives	4
	1.4	Researc	ch Scope	5
	1.5	Researc	ch Significance	5
	1.6	Dissert	ation Organization	5
CHAPTER 2	LITE	RATURE	REVIEW	7
	2.1	Free Su	urface Vortex	7
		2.1.1	FSV Basic Concept	7
		2.1.2	FSV Structure	10
		2.1.3	FSV as a Useful Source	15
	2.2	Conclu	ding Remarks on GWVPP	28
		2.2.1	Geometry Design	31
		2.2.2	Parameters Affecting GWVPP Perfor-	
			mance	31
		2.2.3	Swirling Devices	31

	2.3	Low He	ead Hydrokinetic Turbines	31
		2.3.1	Turbines General Review	32
		2.3.2	Turbine Design	35
		2.3.3	Turbine Performance	37
		2.3.4	Summary of Literature For GWVPP	45
CHAPTER 3	METH	ODOLO	GY	47
	3.1	Introdu	ction	47
		3.1.1	Numerical Approach	47
			3.1.1.1 Grid Generation	48
			3.1.1.2 Method of Computation	49
			3.1.1.3 Governing Equations	49
		3.1.2	Test Setup	50
		3.1.3	Assessing New System, Analysis, and	
			Validation	50
	3.2	Stage	(1): Determine Parameters Affecting	
		Perforn	nance of GWVPP	51
		3.2.1	Parametric Study Through CFD	51
		3.2.2	Validation of CFD Simulation in the	
			Absence of Turbine	53
		3.2.3	Vortex Center Detection Using PIV	53
	3.3	Stage ((2): Optimize Vortex Pool to Improve	
		Energy	Conversion	57
		3.3.1	Pool Configuration	58
		3.3.2	Pool Parameters	61
			3.3.2.1 d/D ratio	62
			3.3.2.2 W/D	63
	3.4	Stage (3): Swirling Device	64
		3.4.1	Guide Vanes	65
			3.4.1.1 Vanes Number	66
			3.4.1.2 Vane Shape	66
			3.4.1.3 Vane Sizes	66
	3.5	Stage (4): Selection of Suitable Turbine for	
		Efficier	nt GWVPP	67

	3.6	Stage (5	5): Ass	sessing New System, Analysis,	
		and Val	idation		68
	3.7	Chapter	Summary	7	72
CHAPTER 4	RESUI	.TS AND	DISCUS	SIONS	73
	4.1	Paramet	ters Affect	ing the Performance of GWVPP	73
		4.1.1	Paramet	ric Study Through CFD Simu-	
			lation in	the Absence of Turbine	73
			4.1.1.1	Effect of changing the water	
				height	74
			4.1.1.2	Effect of changing the outlet	
				diameter	76
		4.1.2	Validati	on of CFD Simulation in the	
			Absence	e of Turbine	78
		4.1.3	Vortex (Center Detection Using PIV	80
	4.2	Numeri	cal Result	ts for Vortex Pool Shape and	
		Paramet	ters Impro	vement	82
		4.2.1	Pool Co	nfiguration	82
		4.2.2	Pool Par	rameters	89
			4.2.2.1	d/D	89
			4.2.2.2	W/D	93
	4.3	Numeri	cal Result	s of Installing Guide Vanes in	
		the Vort	tex Pool		97
		4.3.1	Results	of Changing Number of Vanes	97
		4.3.2	Results	of Changing Shape of Vanes	102
		4.3.3	Results	of Changing Size of Vanes	104
	4.4	Experin	nental Res	sults of Curved and Crooked	
		Turbine	S		108
	4.5	Results	of CFD	Validation of GWVPP in the	
		presence	e of Turbii	ne	109
	4.6	Chapter	Summary	7	111

CHAPTER 5	CONCI	LUSIONS	AND RECOMMENDATIONS FOR	
	FUTURE WORK			113
	5.1	Summar	y of Achievement of Objectives	113
		5.1.1	Determine Critical Parameters in	
			Strengthening Free Surface Vortex	113
		5.1.2	Optimize the vortex pool to increase the	
			kinetic energy	113
		5.1.3	Select suitable turbine parameters for	
			efficient GWVPP	114
		5.1.4	Assess the performance of the new	
			vortex system	114
	5.2 H	Recomm	endations for Future Works	114
REFERENCES	S			115

LIST OF PUBLICATIONS	125

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Power and Efficiency Results (Wanchat et al., 2013)	20
Table 2.2	Comparison between GWVPP and other hydrokinetic turbines	
	(Wiemann et al., 2007)	27
Table 2.3	Summary of literature on GWVPP	29
Table 2.4	Summary of turbines performance and operation	44
Table 3.1	Parameters for case 1 & 2	52
Table 3.2	Mesh No. for the five cases	53
Table 3.3	Cases of different pool configuration	59
Table 3.4	Cases of different d/D parameter	62
Table 3.5	Cases of different W/D parameter	64
Table 4.1	Effect of Changing Inlet Velocity (100 cm outlet diameter and	
	different water depths)	74
Table 4.2	Effect of Changing Inlet Velocity (100 cm water depth and	
	different outlet diameters	76
Table 4.3	Comparison of CFD and experimental results	80

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure 1.1	Examples of turbine systems (Khan et al. 2009)	3
Figure 1.2	Examples of non-turbine systems (Khan et al.2009)	3
Figure 1.3	Schematic of GWVPP (Power et al., 2016)	4
Figure 2.1	Vortex classification (Trivellato, 2010)	8
Figure 2.2	Variation of tangential velocity in compined vortex (Kiviniemi	
	and Makusa 2009)	8
Figure 2.3	Numerical and experimental result	10
Figure 2.4	Vertical vortex flow (Chen et al., 2007)	11
Figure 2.5	Vortex shape with streamlines for the four cases. (a) ω =500	
	rad/s, (b) ω =800 rad/s, (c) ω =1200 rad/s, (d) ω =1500 rad/s	
	(Shi et al, 2012)	13
Figure 2.6	Prosser disc improved version (Trivellato, 2010)	13
Figure 2.7	Effect of changing diameter aspect ratio on the critical height	
	(Basu <i>et al.</i> , 2013)	14
Figure 2.8	Funnel shape in (a) experimental and (b) theoretical results	
	(Popescu and Robesco, 2011)	15
Figure 2.9	(a) Numerical predictions, and (b) Experimental results of	
	vortex shape at different speeds (Mahmud et al., 2009)	17
Figure 2.10	Vortex height versus discharge (Mulligan and Casserly, 2010)	18
Figure 2.11	Tangential velocity along radial direction at different mean	
	heights (Wanchat and Suntivarakorn, 2012)	18
Figure 2.12	Tangential velocity at different water height (Wanchat and	
	Suntivarakorn, 2012)	19
Figure 2.13	Section through Conical Pool of GWVPP (Marian et al., 2012)	20
Figure 2.14	Model 1 and 2 mass flow versus time (Kueh, 2014)	22
Figure 2.15	prototype for GWVPP (Venukumar, 2013)	23
Figure 2.16	Conical pool parameters for GWVPP (Dhakal et al., 2014b)	23
Figure 2.17	Laboratory model of GWVPP (Power et al., 2016)	25
Figure 2.18	Tangential (a, b, c, d, and e), and axial (f) vortex generators	
	(Alekseenko et al., 2007))	28

Figure 2.19	Hydrokinetic Turbines Classification	32
Figure 2.20) Hydrokinetic turbines (Guney and Kaygusuz, 2010)	32
Figure 2.2	Hydrokinetic turbines Unducted cross-flow turbines	33
Figure 2.22	2 Vertical axis turbines (Hassan <i>et al.</i> 2012)	34
Figure 2.2.	3 Vertical axis turbine mounted on (a) Supporting structure; (b)	
	Float (Akimoto et al.2013)	36
Figure 2.24	Split pipe turbine (Date and Akbarzadeh, 2009)	37
Figure 2.2:	5 Savonius turbine (Khan <i>et al.</i> , 2009b)	38
Figure 2.20	5 Straight and helical blades Darrieus turbine (Kirke and	
	Lazauskas, 2011)	39
Figure 2.2 ²	7 Darrieus- Savonius turbine (Sahim et al. 2013)	40
Figure 2.28	8 Hunter turbine (Yang and Lawn, 2011)	41
Figure 2.29	vertical axis tidal current turbine (Guang <i>et al.</i> , 2013)	41
Figure 2.30	Cross flow turbine with guide vane (Kokubu <i>et al.</i> 2013)	42
Figure 2.3	Barkerâ€ [™] s Mill turbine (Date <i>et al.</i> , 2013)	43
Figure 3.1	Methodology Flowchart	48
Figure 3.2	GWVPP prototype dimensions in meters	51
Figure 3.3	Boundry Conditions	52
Figure 3.4	Vortex pool dimensions showing inlet/ outlet	54
Figure 3.5	Vortex pool system	54
Figure 3.6	Test setup	55
Figure 3.7	Schematic of US model	55
Figure 3.8	Setup of US model	56
Figure 3.9	Laser measurements	57
Figure 3.10) Curved turbine	58
Figure 3.1	Cone angle (α)	59
Figure 3.12	2 Cylindrical shape	60
Figure 3.1.	3 Conical shape	60
Figure 3.14	4 Semi-conical shape	60
Figure 3.1:	5 Computational domain of cylindrical shape	61
Figure 3.10	6 Computational domain of conical shape	61
Figure 3.1	7 Computational domain of semi-conical shape	62
Figure 3.18	8 Section in computational domain of semi-conical shape	62

Figure 3.19	plan view for GWVPP model showing pool outlet diameter	
	(d), and pool diameter (D)	63
Figure 3.20	plan view for GWVPP model showing channel width (W) and	
	pool diameter (D)	63
Figure 3.21	0.1 W/D cylindrical pool	64
Figure 3.22	computational domain of 0.2 W/D cylindrical pool	64
Figure 3.23	CAD drawing for guide vanes installed in cylindrical pool	65
Figure 3.24	Vane dimensions	66
Figure 3.25	Computational domain of the vortex pool with vanes installed	67
Figure 3.26	Vanes number 5-8	67
Figure 3.27	Vanes different shapes	67
Figure 3.28	Different vanes sizes	68
Figure 3.29	Crooked and curved turbines	68
Figure 3.30	Turbine schematic showing its dimensions	69
Figure 3.31	Turbine computational domain	69
Figure 3.32	Test setup	70
Figure 4.1	Effect of Changing Inlet Velocity (100 cm outlet diameter and	
	different water depths)	75
Figure 4.2	Outlet speed versus inlet flow rate	75
Figure 4.3	Effect of Changing Inlet Velocity (100 cm water depth and	
	different outlet diameters)	77
Figure 4.4	Outlet Speed versus inlet flow rate at different outlet diameters	77
Figure 4.5	Tangential Velocity distribution along radial direction	78
Figure 4.6	Vortex flow structure in experiments	79
Figure 4.7	Free surface shape at 250 mm water height	79
Figure 4.8	Comparison of CFD and experimental results	80
Figure 4.9	Vortex center detection experimental results	81
Figure 4.10	Vortex classification experimental results	81
Figure 4.11	Numerical results of turbine torque against (λ) for different	
	shapes	82
Figure 4.12	Numerical results of output power against (λ) for different	
	shapes	83
Figure 4.13	Numerical results of turbine efficiency against (λ) for different	
	shapes	83

Figure 4.14	Velocity contours for different shapes at $\lambda = 3.72$	85
Figure 4.15	Velocity streamlines for cylindrical shape	86
Figure 4.16	Velocity streamlines for semi-conical shape	86
Figure 4.17	Velocity streamlines for conical shape	87
Figure 4.18	Velocity vectors for cylindrical shape	87
Figure 4.19	Velocity vectors for semi-conical shape	88
Figure 4.20	Velocity vectors for conical shape	88
Figure 4.21	Output torque versus turbine tip speed ratio for different orifice	
	diameters	89
Figure 4.22	Output power versus (λ) for different orifice diameters	90
Figure 4.23	Efficiency versus (λ) for different orifice diameters	90
Figure 4.24	Velocity contours for different d/D ratio of cylindrical shape	
	at $\lambda = 1.05$	91
Figure 4.25	Velocity vectors and streamlines for different d/D ratio of	
	cylindrical shape at $\lambda = 1.05$	92
Figure 4.26	Output torque versus tip speed ratio for different channel width	
	to pool diameter ratios	93
Figure 4.27	Output power versus tip speed ratio for different channel width	
	to pool diameter ratios	93
Figure 4.28	Efficiency versus tip speed ratio for different channel width to	
	pool diameter ratios	94
Figure 4.29	Velocity contours for W/D=0.1, and W/D=0.2 for cylindrical	
	shape at $\lambda = 1.05$	95
Figure 4.30	Velocity contours for W/D=0.3, and W/D=0.4 for cylindrical	
	shape at $\lambda = 1.05$	95
Figure 4.31	Velocity vectors and streamlines for W/D=0.1, and W/D=0.2	
	for cylindrical shape at $\lambda = 1.05$	96
Figure 4.32	Velocity vectors and streamlines for W/D=0.3, and W/D=0.4	
	cylindrical shape at $\lambda = 1.05$	97
Figure 4.33	Turbine torque against tip speed ratio for different vane	
	numbers	98
Figure 4.34	Turbine power against tip speed ratio for different vane	
	numbers	98

Figure 4.35	Turbine efficiency against tip speed ratio for different vane	
	numbers	99
Figure 4.36	Velocity contours for different vane numbers at $\lambda = 1.17$	100
Figure 4.37	Velocity contours for different vane numbers at $\lambda = 1.17$	100
Figure 4.38	Velocity vectors and streamlines for different vane numbers at	
	$\lambda = 1.17$	101
Figure 4.39	Velocity vectors and streamlines for different vane numbers at	
	$\lambda = 1.17$	102
Figure 4.40	Turbine torque for different vane shapes versus tip speed ratio	103
Figure 4.41	Output power for different vane shapes versus tip speed ratio	103
Figure 4.42	Efficiency for different vane shapes versus tip speed ratio	104
Figure 4.43	Velocity contours for different vane shapes at $\lambda = 1.17$	105
Figure 4.44	Turbine torque for different vane sizes versus tip speed ratio	106
Figure 4.45	Output power for different vane sizes versus tip speed ratio	106
Figure 4.46	Efficiency for different vane sizes versus tip speed ratio	106
Figure 4.47	Velocity contours at $\lambda = 1.17$ for different vane sizes	107
Figure 4.48	Velocity contours at $\lambda = 1.17$ for different vane sizes	107
Figure 4.49	Curved and crooked turbine torque versus tip speed ratio	108
Figure 4.50	Curved and crooked turbine output power versus tip speed	
	ratio	109
Figure 4.51	Curved and crooked turbine efficiency versus tip speed ratio	109
Figure 4.52	Velocity contours for curved and crooked turbines	110
Figure 4.53	RSM torque calculations in comparison with experimental	
	results	110
Figure 4.54	RSM power calculations in comparison with experimental	
	results	111
Figure 4.55	RSM efficiency calculations in comparison with experimental	
	results	111

LIST OF ABBREVIATIONS

CF	-	Coriolis Force
CFD	-	Computational Fluid Dynamics
FOV	-	Field of View
FSV	-	Free Surface Vortex
FVM	-	Finite Volume Method
GWVPP	-	Gravitational Water Vortex Power Plant
IGES	-	Initial Graphics Exchange Specification
KW	-	Kilo Watt
LES	-	Large Eddy Simulation
MW	-	Mega Watt
NACA	-	National Advisory Committee for Aeronautics
NS	-	Navier Stokes
PIV	-	Particle Image Velocimetry
PRESTO	-	Pressure staggering Option
PTV	-	Particle Tracking Velocimetry
RANS	-	Reynolds Averaged Navier - Stokes Equation
RPM	-	Revolution Per Minute
RM	-	Malaysian Ringgit
RNG	-	Renormalization Group Theory
RSM	-	Reynolds Stress Model
SAS-CC	-	Scale-Adaptive Simulation-curvature-correction
SHP	-	Small Hydro Power
SIMPLE	-	Semi-Implicit Methods for Pressure- Linked Equation
SST	-	Shear Stress Transport
TM	-	Trade Mark
UIUC	-	University of Illinois at Urbana Champaign
UTM	-	Universti Teknologi Malaysia

US	-	United States of America	
VAMCT	-	Vertical Axis Marine Current Turbine	
VAT	-	Vertical Axes Turbine	
VOF	-	Volume of Fluid Method	
WPI	-	Worcester Polytechnic Institute	

LIST OF SYMBOLS

Α	-	Cross sectional area of channel (m^2)
Al	-	Aluminum
A_t	-	Active area of turbine (m^2)
Ca	-	Capillary number
CO_2	-	Carbon Dioxide
C_p	-	Power coefficient
d	-	Outlet diameter (m)
D	-	Vortex pool diameter (m)
D_{ω}	-	The cross-diffusion term
Fe	-	Stainless steel
Fr	-	Froude number
8	-	Gravitational acceleration (m/s^2)
G_k	-	Generation of turbulence kinetic energy
G_ω	-	The generation of ω
h	-	water depth (m)
Н	-	Head (m)
Κ	-	Turbulence kinetic energy
L	-	The dimensionless distance from the rotor shaft centre
P _{max}	-	Maximum extracted power (Watt)
Pout	-	Output power (Watt)
Q	-	Inflow rate (m^3/s)
r	-	Vortex core radius (m)
Re	-	Reynolds Number
Vin	-	Inlet velocity (m/s)
Vout	-	Outlet velocity (m/s)
$V_{ heta}$	-	Tangential velocity component (m/s)
V_r	-	Radial velocity component (<i>rad/s</i>)

V_z	-	Axial velocity component (m/s)	
W	-	Channel width (m)	
We	-	Weber number	
Y_k	-	Dissipation of k due to turbulence	
Y_{ω}	-	Dissipation of ω due to turbulence	
Greek Symbols	-	:	
α	-	Cone angle	
β	-	The angle of attachment	
η	-	Turbine efficiency	
Г	-	Circulation of flow (m^2/s)	
λ	-	Tip speed ratio	
ω	-	Turbine angular velocity	
ρ	-	Water density (Kg/ m^3)	
ε	-	Block ratio	
Γ_k	-	The effective diffusivity for k	
Γ_{ω}	-	The effective diffusivity for ω	

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix A	MatLab Code		127

CHAPTER 1

INTRODUCTION

1.1 Research Background

The search for renewable energy sources like wind power, hydropower and solar energy as alternatives for power generation arose as a response to the social, economic and environmental complications of using fossil fuels (Kaldellis *et al., 2013*). Moreover, nowadays, many developing countries are encountering an energy crisis due to the increase in industrialization for development programs. If this excess demand is supplied from fossil fuels, it will harm the environment. Consequently, exploring renewable energy resources is now necessary for sustainable energy in order to balance the 70 % increase in electricity demand all over the world, to comply with the needs of rapid growth of electricity, as well as to reduce CO_2 impact on the environment (Lahimer *et al.*, 2012).

Renewable energy development in Malaysia is still in its primary stage. Hashim and Ho (2011) estimated that utilization of 5% of renewable energy for five years will save the country RM 5 billion (US \$ 1.32 billion). Subsequently, according to the Tenth Malaysia Plan (2011-2015), the expansion of research into green technology is encouraged via commercialization through proper mechanisms such as in (Chua and Oh, 2010).

In this trend, Khan *et al.* (2009) considered energy in flowing river streams, tidal currents, or other artificial water channels as an appropriate source of renewable power. Malaysia is generating 18,500 MW from hydropower, and 30.3 MW of mini-hydropower is under construction, with 490 MW is expected by 2020. Although real potential is expected for micro-hydropower, it is not fully utilized (Ahmad *et al.*, 2011). Furthermore, Malaysia Energy Centre's National Energy Balance expects mini-hydropower to reach 500 MW (Oh *et al.*, 2010).

Micro-hydro power plants can provide electricity to remote communities. Many installations have been implemented worldwide, mostly in developing countries. They can be a clean, economical source of energy without the need for fuel (Sopian *et al.*, 2011). Utilizing a 10 KW mini-hydropower system can remove one thousand gallons of diesel fuel per year (Ong *et al.*, 2011). Moreover, small hydropower is supported by international efforts to decrease greenhouse gasses' effects on the environment (Sipahutar *et al.*, 2013). Furthermore, improving hydropower and small hydropower (SHP) plants is considered as a high potential source of renewable energy resources (Sharma *et al.*, 2013).

Khan *et al.* (2009a) divided hydrokinetic energy conversion into two categories: turbine and non-turbine systems, as shown in Figure 1.1 and Figure 1.2, respectively. Figure 1.1 (a) shows a venturi, which is a chocking system that results in water acceleration. This water will then turn a turbine. In Figure 1.1 (b), a vertical axis turbine is driven by an artificial vortex. Figure 1.2 (a), Vortex Induced Vibration for Aquatic Clean Energy (VIVACE), the flowing current passing through cylinder forms a vortex in the downstream. Vortex shedding alternates from one side to another, causing the cylinder to oscillate. The energy produced by the cylinder's movement is then converted to electricity. Figure 1.2 (b) displays a Seasnail device where a vertical oscillation of hydrofoil is capable of generating pressurized fluids, which can be utilized in turbine rotation.

Presently, various turbine concepts and designs are being implemented extensively, whereas non-turbine systems are generally at the proof-of-concept stage (with some exceptions). Therefore, turbine systems are given more attention as they are the most promising for deployment (Khan *et al.*, 2009a). One turbine system technique is Gravitational Water Vortex Power Plant (GWVPP). This system is capable of generating electricity from low heads 0.7m to 3 m and can be applied in mini/micro hydropower plants (Wanchat and Suntivarakorn, 2012). This system also has broad applications in low-head cases such as streams, small rivers, irrigation canals, wastewater and rainwater harvesting systems (Mohanan, 2016).

Figure 1.1 Examples of turbine systems (a) HydroVenturi TM; (b) (GWVPP) TM. (Khan *et al.*, 2009a)

Figure 1.2 Examples of non-turbine systems (a) VIVACE TM ; (b) Seasnail TM . (Khan *et al.*, 2009a)

GWVPP utilizes the available energy in the gravitational vortex, which is usually generated in a circular pool with a tangential inlet and an outlet at the bottom center, as shown in Figure 1.3. The energy produced by the vortex is captured by a vertical axis turbine employed in the center of the pool, at the vortex core where the rotational speed is maximum. The turbine rotates with the swirling flow, thus generating mechanical power which is converted into electrical energy by means of an alternator.

Figure 1.3 Schematic of GWVPP (Power et al., 2016)

1.2 Problem Statement

In GWVPP, the hydrostatic head is low. However, it has been shown that using the natural gravitation vortex formed in nature will enable us to extract more energy, even at low heads. However, the efficiency is still very low. Therefore, there is a need to improve the efficiency by carrying out research on two fronts. First, we must optimize the vortex pool for GWVPP in order to increase the efficiency of transfer from potential energy to kinetic energy, using the natural vortex and artificially augmented vortex. Secondly, the turbine must also be optimized to obtain maximum power from such low kinetic and potential energy.

The goal of this research is to investigate the optimum configuration of the GWVPP and design the appropriate turbine so that the maximum power can be generated.

1.3 Research Objectives

The specific objectives of this research are to:

i. Determine critical parameters in strengthening Free Surface Vortex.

- ii. Optimize the vortex pool to increase the kinetic energy.
- iii. Select suitable turbine parameters for efficient GWVPP.
- iv. Assess the performance of the new vortex system.

1.4 Research Scope

In this thesis, vortex pool configuration has been studied from the fluid mechanic's point of view to capture as much kinetic energy as possible from the water vortex flow. The challenge is to increase the system efficiency while maintaining a very low operating head of 0.2-0.3 m and a flow rate of 0.028-0.064 m^3/s . The range of channel width to the pool diameter ratio studied was between 0.1-0.4. As for the orifice diameter to the basin diameter, it was in the range of 0.16-0.2. Finally, a swirling device is employed in the pool, to enhance the energy conversion in the vortex pool. This idea is a new approach in the mini/ micro hydropower generation fields.

The optimum parameters of the GWVPP were analyzed and determined using CFD. Then, the system prototype had been fabricated for experimental testing.

1.5 Research Significance

This study begins with reviewing hydrodynamics of turbomachinery, examining various designs of water turbines, and using Computational Fluid Dynamics for optimizing the turbine parameters. It will determine the parameters which can be used by CFD to improve the water vortex kinetic energy like vortex configuration, water head, and diameter of orifice, inlet and outlet conditions. The Malaysian climate is taken into consideration in this research to provide small communities with green economic energy.

1.6 Dissertation Organization

This dissertation is organized as follows.

Chapter 2 reviews related works to Gravitational Water Vortex Power Plant (GWVPP). It is divided into three sections: the first section reviews the Free Surface Vortex (FSV) flow showing the different aspects of this phenomenon, the second section

summarizes the relevant findings to GWVPP, and the last one surveys various designs of turbines and their performance.

Chapter 3 describes the methodology. It includes five stages. The first stage is the determination of the parameters affecting the performance of GWVPP. The second stage is to optimize the affecting parameters to improve energy conversion. In the third stage, the effect of installing swirling devices in the vortex pool on the system efficiency is numerically investigated. Finally, an experimental study for the employment of two different turbines and system validation are presented.

Chapter 4 presents results and discussions of the five stages. The first one shows the results of the vortex pool parametric study in the absence of turbine, and its validation. The second one is vortex pool configuration and parameters optimization in the presence of turbine. The third is the results of the novel approach of installing a swirling device in the GWVPP vortex pool. The fourth one is a comparison between curved and crooked turbines. Finally, the validation and analysis of the results.

Finally, Chapter 5 presents the conclusions drawn from the numerical simulation and experimental testing of GWVPP vortex pool. Moreover, recommendations for future studies in GWVPP have also been presented.

REFERENCES

- Ahmad, S., Ab Kadir, M. Z. A. and Shafie, S. (2011). Current perspective of the renewable energy development in Malaysia. *Renewable and Sustainable Energy Reviews*. 15(2), 897–904.
- Akimoto, H., Tanaka, K. and Uzawa, K. (2013). A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents. *Renewable Energy*. 57, 283–288.
- Alekseenko, S., Kuibin, P. and Okulov, V. (2007). Experimental observation of concentrated vortices in vortex apparatus. In *Theory of Concentrated Vortices*. (pp. 379–466). Springer.
- Alexander, K., Giddens, E. and Fuller, A. (2009a). Axial-flow turbines for low head microhydro systems. *Renewable Energy*. 34(1), 35–47.
- Alexander, K., Giddens, E. and Fuller, A. (2009b). Radial-and mixed-flow turbines for low head microhydro systems. *Renewable Energy*. 34(7), 1885–1894.
- Anyi, M. and Kirke, B. (2010). Evaluation of small axial flow hydrokinetic turbines for remote communities. *Energy for Sustainable Development*. 14(2), 110–116.
- Anyi, M. and Kirke, B. (2011). Hydrokinetic turbine blades: design and local construction techniques for remote communities. *Energy for Sustainable Development*. 15(3), 223–230.
- Assirelli, M., Bujalski, W., Eaglesham, A. and Nienow, A. W. (2008). Macro-and micromixing studies in an unbaffled vessel agitated by a Rushton turbine. *Chemical Engineering Science*. 63(1), 35–46.
- Barelli, L., Liucci, L., Ottaviano, A. and Valigi, D. (2013). Mini-hydro: A design approach in case of torrential rivers. *Energy*. 58, 695–706.
- Basu, P., Agarwal, D., Tharakan, T. J. and Salih, A. (2013). Numerical studies on aircore vortex formation during draining of liquids from tanks. *International Journal* of Fluid Mechanics Research. 40(1), 27–41.
- Beran, V., Sedláček, M., Mar^{*}s, F. *et al.* (2013). A new bladeless hydraulic turbine. *Applied Energy*. 104, 978–983.

- Chen, Y.-I., Chao, W., Mao, Y. and Ju, X.-m. (2007). Hydraulic characteristics of vertical vortex at hydraulic intakes. *Journal of Hydrodynamics, Ser. B.* 19(2), 143–149.
- Chua, S. C. and Oh, T. H. (2010). Review on Malaysia's national energy developments: Key policies, agencies, programmes and international involvements. *Renewable and Sustainable Energy Reviews*. 14(9), 2916–2925.
- Dai, Y., Gardiner, N., Sutton, R. and Dyson, P. (2011). Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines. *Proceedings* of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 295–307.
- Dai, Y. and Lam, W. (2009). Numerical study of straight-bladed Darrieus-type tidal turbine. *Proceedings of the ICE-Energy*. 162(2), 67–76.
- Date, A. and Akbarzadeh, A. (2009). Design and cost analysis of low head simple reaction hydro turbine for remote area power supply. *Renewable Energy*. 34(2), 409–415.
- Date, A., Date, A. and Akbarzadeh, A. (2013). Investigating the potential for using a simple water reaction turbine for power production from low head hydro resources. *Energy Conversion and Management*. 66, 257–270.
- Dhakal, R., Shrestha, S., Neupane, H., Adhikari, S. and Bajracharya, T. (2019). Inlet and Outlet Geometrical Condition for Optimal Installation of Gravitational Water Vortex Power Plant with Conical Basin Structure. In *Recent Advances in Mechanical Infrastructure*. Springer Singapore, 163–174.
- Dhakal, S., Nakarmi, S., Pun, P., Thapa, A. B. and Bajracharya, T. R. (2014a). Development and Testing of Runner and Conical Basin for Gravitational Water Vortex Power Plant. *Journal of the Institute of Engineering*. 10(1), 140–148.
- Dhakal, S., Timilsina, A., Dhakal, R., Fuyal, D., Bajracharya, T. R. and Pandit, H. P. (2014b). Effect of Dominant Parameters for Conical Basin: Gravitational Water Vortex Power Plant. In *Proceedings of IOE Graduate Conference*. 38–386.
- Dhakal, S., Timilsina, A. B., Dhakal, R., Fuyal, D., Bajracharya, T. R., Pandit, H. P., Amatya, N., Nakarmi, A. M. *et al.* (2015). Comparison of cylindrical and conical

basins with optimum position of runner: Gravitational water vortex power plant. *Renewable and Sustainable Energy Reviews*. 48(C), 662–669.

- Dong, Z. Y., Zhang, X., Wang, L., Han, W., Yu, X. W., Yan, X. F., Zhu, F. and Li, X. P. (2012). A Comparison of Rotational Speed of Marine Current Power-Generation Turbine with and without a Speeding-up Inlet. In *Advanced Materials Research*, vol. 383. Trans Tech Publ, 4516–4520.
- Evans, W. K., Suksangpanomrung, A. and Nowakowski, A. F. (2008). The simulation of the flow within a hydrocyclone operating with an air core and with an inserted metal rod. *Chemical Engineering Journal*. 143(1), 51–61.
- Gheorghe-Marius, M. and Tudor, S. (2013). Energy Capture in the Gravitational Vortex Water Flow. *Journal of Marine Technology & Environment*. 1, 89–96.
- Golecha, K., Eldho, T. and Prabhu, S. (2011). Influence of the deflector plate on the performance of modified Savonius water turbine. *Applied Energy*. 88(9), 3207–3217.
- Guang, Z., YANG, R.-s., Yan, L. and ZHAO, P.-f. (2013). Hydrodynamic performance of a vertical-axis tidal-current turbine with different preset angles of attack. *Journal of Hydrodynamics, Ser. B.* 25(2), 280–287.
- Güney, M. and Kaygusuz, K. (2010). Hydrokinetic energy conversion systems: A technology status review. *Renewable and Sustainable Energy Reviews*. 14(9), 2996–3004.
- Gupta, R., Kaulaskar, M., Kumar, V., Sripriya, R., Meikap, B. and Chakraborty, S. (2008). Studies on the understanding mechanism of air core and vortex formation in a hydrocyclone. *Chemical Engineering Journal*. 144(2), 153–166.
- Gürbüzdal, F. A. (2009). *Scale effects on the formation of vortices at intake structures*. Ph.D. Thesis. Citeseer.
- Hao, Z. R., Xu, J., Bie, H. Y. and Zhou, Z. H. (2013). Numerical Simulation of the Effects of Baffle on Flow Field in a Stirred Tank. *Advanced Materials Research*. 732, 432–435.
- Hashim, H. and Ho, W. S. (2011). Renewable energy policies and initiatives for a sustainable energy future in Malaysia. *Renewable and Sustainable Energy Reviews*. 15(9), 4780–4787.

- Hassan, H. F., El-Shafie, A. and Karim, O. A. (2012). Tidal current turbines glance at the past and look into future prospects in Malaysia. *Renewable and Sustainable Energy Reviews*. 16(8), 5707–5717.
- Hecker, G. E. (1981). Model-Prototype Comparision of Free Surface Vortices. *Journal* of the Hydraulics Division. 107(10), 1243–1259.
- Hoq, M. T., Nawshad, U., Islam, M. N., IbneaSina, M. K. S. and Rahman, R. (2011).
 Micro hydro power: promising solution for off-grid renewable energy source. *Int. J. Sci. Eng. Res.* 2(12), 1–5.
- Hwang, I. S., Lee, Y. H. and Kim, S. J. (2009). Optimization of cycloidal water turbine and the performance improvement by individual blade control. *Applied Energy*. 86(9), 1532–1540.
- Jasa, L., Priyadi, A. and Purnomo, M. H. (2012). Designing angle bowl of turbine for Micro-hydro at tropical area. In *International Conference on Condition Monitoring* and Diagnosis (CMD). 882–885.
- Jeon g, J.-T. (2012). Free-surface deformation due to spiral flow owing to a source/sink and a vortex in Stokes flow. *Theoretical and Computational Fluid Dynamics*. 26(1-4), 93–103.
- Kailash, G., Eldho, T. and Prabhu, S. (2012). Performance study of modified Savonius water turbine with two deflector plates. *International Journal of Rotating Machinery*. 2012, 1–12.
- Kaldellis, J., Kapsali, M., Kaldelli, E. and Katsanou, E. (2013). Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications. *Renewable Energy*. 52, 197–208.
- Khan, M., Bhuyan, G., Iqbal, M. and Quaicoe, J. (2009a). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. *Applied Energy*. 86(10), 1823– 1835.
- Khan, N. I., Iqbal, T., Hinchey, M. and Masek, V. (2009b). Performance of savonius rotor as a water current turbine. *The Journal of Ocean technology*. 4(2), 71–83.
- Kirke, B. (2011). Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. *Renewable Energy*. 36(11), 3013–3022.

- Kirke, B. and Lazauskas, L. (2011). Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. *Renewable Energy*. 36(3), 893–897.
- Kiviniemi, O. and Makusa, G. (2009). A scale model investigation of free surface vortex with particle tracking velocimetry. *Master Thesis, Luleå tekniska universitet*.
- Knauss, J. (1987). Swirling flow problems at intakes. Taylor and Francis.
- Kokubu, K., Kanemoto, T., Yamasaki, K. *et al.* (2013). Guide Vane with Current Plate to Improve Efficiency of Cross Flow Turbine. *Open Journal of Fluid Dynamics*. 3(02), 28–35.
- Kueh, T. C., Beh, S. L., Rilling, D. and Ooi, Y. (2014). Numerical Analysis of Water Vortex Formation for the Water Vortex Power Plant. *International Journal of Innovation, Management and Technology*. 5(2), 111–115.
- Lago, L., Ponta, F. and Chen, L. (2010). Advances and trends in hydrokinetic turbine systems. *Energy for Sustainable Development*. 14(4), 287–296.
- Lahimer, A., Alghoul, M., Sopian, K., Amin, N., Asim, N. and Fadhel, M. (2012). Research and development aspects of pico-hydro power. *Renewable and Sustainable Energy Reviews*. 16(8), 5861–5878.
- Lain, S. and Osorio, C. (2010). Simulation and evaluation of a straight-bladed Darrieustype cross flow marine turbine. *Journal of scientific & industrial research*. 69(12), 906–912.
- Lazauskas, L. and Kirke, B. (2012). Modeling passive variable pitch cross flow hydrokinetic turbines to maximize performance and smooth operation. *Renewable energy*. 45, 41–50.
- Li, B. and Tsukihashi, F. (2005). Vortexing flow patterns in a water model of slab continuous casting mold. *ISIJ international*. 45(1), 30–36.
- Li, B. and Tsukihashi, F. (2006). Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold. *ISIJ international*. 46(12), 1833–1838.
- Li, H.-f., Chen, H.-x., Zheng, M. and Yi, Z. (2008). Experimental and numerical investigation of free surface vortex. *Journal of Hydrodynamics, Ser. B.* 20(4), 485– 491.

- Li, H.-f., Chen, H.-x., Zheng, M. and Yi, Z. (2009). Formation and influencing factors of free surface vortex in a barrel with a central orifice at bottom. *Journal of Hydrodynamics, Ser. B.* 21(2), 238–244.
- Mahmud, T., Haque, J. N., Roberts, K. J., Rhodes, D. and Wilkinson, D. (2009). Measurements and modelling of free-surface turbulent flows induced by a magnetic stirrer in an unbaffled stirred tank reactor. *Chemical Engineering Science*. 64(20), 4197–4209.
- Marian, E. G.-M., Sajin, T. and Florescu, I. (2012). The concept and theoretical study of micro hydropower plant with gravitational vortex and turbine with rapidity steps.
 In *World Energy System Conference WESC*, vol. 3. 219–226.
- Marian, M. G., Sajin, T. and Azzouz, A. (2013). Study of Micro Hydropower Plant Operating in Gravitational Vortex Flow Mode. In *Applied Mechanics and Materials*, vol. 371. Trans Tech Publ, 601–605.
- Mishra, S., Singal, S. and Khatod, D. (2012). A review on electromechanical equipment applicable to small hydropower plants. *International Journal of Energy Research*. 36(5), 553–571.
- Mohanan, A. (2016). Power generation with simultaneous aeration using a gravity vortex turbine. *Int. J. Sci. Eng. Res.* 7(2), 19–23.
- Mulligan, S. and Casserly, J. (2010). The Hydraulic Design and Optimisation of a Free Water Vortex for the Purpose of Power Extraction. *Eng. Thesis, Institute of Technology Sligo, Sligo, Irland.*
- Mulligan, S., Casserly, J. and Sherlock, R. (2014). Hydrodynamic Investigation Of Free-Surface Turbulent Vortex Flows with Strong Circulation in a Vortex Chamber. In 5th IAHR International Junior Researcher and Engineer Workshop on Hydraulic Structures.
- Mulligan, S. and Hull, P. (2010). Design and optimisation of a water vortex hydropower plant. *Eng. Thesis, Institute of Technology Sligo, Sligo, Irland.*
- Nababan, S., Muljadi, E. and Blaabjerg, F. (2012). An overview of power topologies for micro-hydro turbines. In *Power Electronics for Distributed Generation Systems* (*PEDG*), 2012 3rd IEEE International Symposium on. IEEE, 737–744.

- Nishi, Y. and Inagaki, T. (2017). Performance and Flow Field of a Gravitation Vortex Type Water Turbine. *International Journal of Rotating Machinery*. 2017, 1–11.
- Oh, T. H., Pang, S. Y. and Chua, S. C. (2010). Energy policy and alternative energy in Malaysia: issues and challenges for sustainable growth. *Renewable and Sustainable Energy Reviews*. 14(4), 1241–1252.
- Okamura, T., Kamemoto, K. *et al.* (2005). CFD Simulation of flow in model pump sumps for detection of vortices. 8th Asian International Fluid Machinery Conference. October 12-15, 2005.
- Okot, D. K. (2013). Review of small hydropower technology. *Renewable and Sustainable Energy Reviews*. 26, 515–520.
- Ong, H., Mahlia, T. and Masjuki, H. (2011). A review on energy scenario and sustainable energy in Malaysia. *Renewable and Sustainable Energy Reviews*. 15(1), 639–647.
- Popescu, N. and Robescu, D. (2011). Separation of Petroleum Residues Using the Vortex Separation Technique. *Scientific Bulletin*. 73(1), 131–138.
- Power, C., McNabola, A. and Coughlan, P. (2016). A parametric experimental investigation of the operating conditions of gravitational vortex hydropower (GVHP). *Journal of Clean Energy Technologies*. 4(2), 112–119.
- Rahman, M., Tan, J., Fadzlita, M. and Muzammil, A. W. K. (2017). A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources. In *IOP Conference Series: Materials Science and Engineering*, vol. 217. IOP Publishing, 1–9.
- Rahman, M. M., Hong, T. J. and Tamiri, F. M. (2018). Effects of Inlet Flow Rate and Penstock's Geometry on the Performance of Gravitational Water Vortex Power Plant. In *International Conference on Industrial Engineering and Operations Management*. 03. 2968–2976.
- Raman, N., Hussein, I., Palanisamy, K. and Foo, B. (2013). An experimental investigation of pump as turbine for micro hydro application. In *IOP Conference Series: Earth and Environmental Science*, vol. 16. IOP Publishing, 1–4.

- Sahim, K., Santoso, D. and Radentan, A. (2013). Performance of combined water turbine with semielliptic section of the savonius rotor. *International Journal of Rotating Machinery*. 2013, 1–5.
- Sapkota, A., Gautam, A., Timilsina, A., Neupane, S., Dhakal, J. and Shakya, S. (2016). Study on Effect of Adding Booster Runner in Conical Basin: Gravitational Water Vortex Power Plant: A Numerical and Experimental Approach. *Proceedings of IOE Graduate Conference*, 107–113.
- Sharma, N. K., Tiwari, P. K. and Sood, Y. R. (2013). A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power. *Renewable and Sustainable Energy Reviews*. 18, 460–470.
- Shi, X., Yang, F., Dai, R., Chen, T. and Wu, Y. (2012). Simulation of free-surface vortex produced by a rotating cylindrical wall below a static barrel. In *IOP Conference Series: Earth and Environmental Science*, vol. 15. IOP Publishing, 52–34.
- Sipahutar, R., Bernas, S. M., Imanuddin, M. S. et al. (2013). Renewable energy and hydropower utilization tendency worldwide. *Renewable and Sustainable Energy Reviews*. 17, 213–215.
- Škerlavaj, A., Lipej, A., Ravnik, J. and Škerget, L. (2010). Turbulence model comparison for a surface vortex simulation. In *IOP Conference Series: Earth and Environmental Science*, vol. 12. IOP Publishing, 12–34.
- Song, B.-M., Garner, B. and Steinbach, S. (2010). Design Feasibility of a New Fluid Vortex Energy Capturing System. In *Green Technologies Conference*, 2010 IEEE. IEEE, 1–4.
- Sopian, K., Ali, B. and Asim, N. (2011). Strategies for renewable energy applications in the Organization of Islamic Conference (OIC) countries. *Renewable and Sustainable Energy Reviews*. 15(9), 4706–4725.
- Sreerag, S., Raveendran, C. and Jinshah, B. (2016). Effect of Outlet Diameter on the Performance of Gravitational Vortex Turbine with Conical Basin. *International Journal of Scientific & Engineering Research*. 7(4), 457–463.
- Sritram, P. and Suntivarakorn, R. (2019). The effects of blade number and turbine baffle plates on the efficiency of free-vortex water turbines. *IOP Conference Series: Earth and Environmental Science*. 257, 012040.

- Sritram, P., Treedet, W. and Suntivarakorn, R. (2015). Effect of turbine materials on power generation efficiency from free water vortex hydro power plant. In *IOP Conference Series: Materials Science and Engineering*, vol. 103. IOP Publishing, 12–18.
- Syafiq, M. (????). (2014) Turbine Development For Vortex Energy System. Bachelor Degree Report, Universiti Teknologi Malaysia, Skudai.
- Torré, J.-P., Fletcher, D. F., Lasuye, T. and Xuereb, C. (2007). An experimental and computational study of the vortex shape in a partially baffled agitated vessel. *Chemical Engineering Science*. 62(7), 1915–1926.
- Trivellato, F. (2010). Anti-vortex devices: Laser measurements of the flow and functioning. *Optics and Lasers in Engineering*. 48(5), 589–599.
- Venukumar, A. (2013). Artificial Vortex (ArVo) power generation—An innovative micro hydroelectric power generation scheme. In *Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), 2013 IEEE*. IEEE, 53–57.
- Vermaak, H. J., Kusakana, K. and Koko, S. P. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. *Renewable and Sustainable Energy Reviews*. 29, 625–633.
- Wanchat, S. and Suntivarakorn, R. (2012). Preliminary Design of a Vortex Pool for Electrical Generation. Advanced Science Letters. 13(1), 173–177.
- Wanchat, S., Suntivarakorn, R., Wanchat, S., Tonmit, K. and Kayanyiem, P. (2013). A parametric study of a gravitation vortex power plant. In *Advanced Materials Research*, vol. 805. Trans Tech Publ, 811–817.
- Wang, Y.-k., Jiang, C.-b. and Liang, D.-f. (2010). Investigation of air-core vortex at hydraulic intakes. *Journal of Hydrodynamics, Ser. B.* 22(5), 696–701.
- Wardhana, E. M., Santoso, A. and Ramdani, A. R. (2019). Analysis of Gottingen 428 Airfoil Turbine Propeller Design with Computational Fluid Dynamics Method on Gravitational Water Vortex Power Plant. *International Journal of Marine Engineering Innovation and Research*. 3(3).
- Wichian, P. and Suntivarakorn, R. (2016). The Effects of Turbine Baffle Plates on the Efficiency of Water Free Vortex Turbines. *Energy Procedia*. 100, 198–202.

- Widden, M. B., French, M. and Aggidis, G. A. (2005). Economic low head hydro power by conversion to air pressure. *Proceedings of the world renewable energy congress*, 171–176.
- Wiemann, P., Müller, G. and Senior, J. (2007). Review of Current Developments in Low Head, Small Hydropower. In 32nd IAHR Conference.
- Xiao, Q., Liu, W. and Incecik, A. (2013). Flow control for VATT by fixed and oscillating flap. *Renewable Energy*. 51, 141–152.
- Yaakob, O. B., Tawi, K. and Sunanto, D. S. (2010). Computer simulation studies on the effect overlap ratio for savonius type vertical axis marine current turbine. *Int. J. Eng. Trans. A Basics.* 23, 79–88.
- Yang, B. and Lawn, C. (2011). Fluid dynamic performance of a vertical axis turbine for tidal currents. *Renewable Energy*. 36(12), 3355–3366.
- Yang, B. and Shu, X. (2012). Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. *Ocean Engineering*. 42, 35–46.
- Zeng, Y., Liu, X. and Wang, H. (2012). Prediction and experimental verification of vortex flow in draft tube of Francis turbine based on CFD. *Procedia Engineering*. 31, 196–205.

LIST OF PUBLICATIONS

Journal with Impact Factor

- A.H. Elbatran, O.B. Yaakob, Yasser M. Ahmed, and H.M. Shabara (2013).
 "Operation and Performance of Low Head Micro Hydropower Turbines: Review." Renewable and Sustainable Energy Reviews, 43, 40-50.
- Elbatran, A. H., O. B. Yaakob, Yasser M. Ahmed, and H. M. Shabara (2015).
 "Numerical Study for the Use of Different Nozzle Shapes in Microscale Channels for Producing Clean Energy." International Journal of Energy and Environmental Engineering 6, no. 2: 137-146.

Indexed Journal (SCOPUS)

- H. M. Shabara, O. B. Yaakob, Yasser M. Ahmed, A. H. Elbatran (2015). "CFD Simulation of Water Gravitation Vortex Pool Flow for Mini Hydropower Plants." Jurnal Teknologi, 74(5).
- H. M. Shabara, O. B. Yaakob, Yasser M. Ahmed, A. H. Elbatran, Muhammad S. M. Faddir (2015). "CFD Validation for Efficient Gravitational Vortex Pool System." Jurnal Teknologi, 74(5).
- O.B. Yaakob, Yasser M. Ahmed, A.H. Elbatran, and H.M. Shabara (2014).
 "A Review on Micro Hydro Power Gravitational Water Vortex and Turbine Systems." Jurnal Teknologi, 69(7).
- A.H. Elbatran, O.B. Yaakob, Yasser M. Ahmed, and H.M. Shabara (2013). "Numerical Investigation of Curvature and Torsion Effects on Water Flow Field in Helical Rectangular Channels." Journal of Engineering Science & Technology 10(7), 827-840.

Non-Indexed Journal

 Yasser M. Ahmed, A.H. Elbatran, and H.M. Shabara (2014). "Study of the Effect of Low Profile Vortex Generators on Ship Viscous Resistance." Journal of Ocean, Mechanical and Aerospace-Science and Engineering, 3, 8-14.

Non-Indexed conference proceedings

 O.B. Yaakob, Yasser M. Ahmed, A.H. Elbatran, and H.M. Shabara (2013).
 "Micro Hydro Power Systems For Clean Energy." The International Conference on Marine Safety and Environment. 12-13 November 2013. Johor Bahru, Malaysia, 262-270.