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ABSTRACT

The greenhouse gas emissions and energy consumption from the production of ordinary 
Portland cement (OPC) have caused the need to have an alternative sustainable binder system that is 
eco-friendlier. While alkali-activated material (AAM) is rapidly emerging as a potential eco-efficient 
and economically viable alternative material to OPC, getting the raw materials for AAM from local 
sources has been a significant challenge. Local sourcing of raw materials from industrial by-products 
ensures the sustainability of AAM. Furthermore, to enhance the commercialization of AAM, the 
mechanical and the durability performance of the AAM synthesized from the local materials need to 
be established. This research seeks to advance state of the art toward using locally sourced waste 
materials to develop alkali-activated mortar. Two of the identified viable solid wastes locally available 
in Saudi Arabia are volcanic ash (VA) and limestone powder (LSP). This study aimed to synthesize 
alkali-activated mortar using VA and LSP and to develop models using artificial intelligence and 
statistical techniques that can quickly and accurately predict the compressive strength of alkali- 
activated volcanic ash and limestone powder. Firstly, experimental work was carried out to synthesize 
and evaluate the developed mortar's fresh, mechanical, and durability performance. The impact of 
constituent variables such as binder ratio varied from (0 to 1), sodium hydroxide concentration [4-14 
M], silica modulus (0.52 -  1.18), curing temperatures (ambient room temperature and oven cured 
temperature maintained from 45 to 90 °C at an interval of 15 °C for 24 hrs), Fine aggregate -to- 
binder ratio (1.4 - 2.2) and alkaline activator to binder ratio (0.45 - 0.55) on the compressive strengths 
and microstructure of the developed mortar was investigated. The synthesized alkali-activated VA and 
LSP binders were examined critically to study the impact of the constituent variables on the product 
formed, bond characteristics, and microstructures using x-ray diffractometer (XRD), scanning electron 
microscope coupled with energy-dispersive x-ray spectroscopy (SEM+EDX), and Fourier transforms 
infrared (FTIR) spectroscopy. Secondly, different models capable of estimating one-day, three-day, 
14-day, and 28-day compressive strength (CS) were developed using a hybrid genetic algorithm (GA), 
support vector regression (SVR) algorithm, and stepwise regression algorithm. The optimization of 
the mix parameters gave the maximum 90-day compressive strength of 31.3 MPa with 60% LSP and 
40% VA using 10 M NaOH ( a q ) ,  silica modulus of 0.89 and cured at 75 °C for 24 hrs duration. Besides, 
about 77% of 28-days compressive strength (27 MPa) could be achieved in 24 hrs using heat curing. 
Samples synthesized with sole 10 M NaOH( a q )  resulted in a binder with a low 28-day compressive 
strength (15 MPa) compared to combined usage of Na2SiO3 ( a q )/10 M NaOH( a q )  activators. Curing at a 
low temperature (25 to 45 ) does not favour strength development, whereas higher curing
temperature enhances strength development. The findings also revealed that the synergistic effect of 
VA with LSP emanated from silica and alumina required to form an aluminosilicate framework, 
which required cation sourced from LSP (Ca2 + )  for charge balancing in the formed skeletal 
framework. The binder products formed are anorthite (CaAl2 Si2 O8 ) and gehlenite (Ca0.Al2O3.SiO2). 
Microstructural analysis revealed that the rough texture of activated VA initially characterized with 
high porosity turned to be filled up by the presence of LSP, thereby improving the microstructural 
density. SEM+EDX indicated that strong alkali (10 M NaOH) enhanced microstructural density 
compared to that of mild alkali (4 M NaOH( a q )).  The binder synthesized with 60% VA and 40% LSP 
exhibited the highest resistance to sulfate and acidic attack. The developed hybrid GA-SVR models 
can estimate the compressive strength of mortar for one day, three days, and fourteen days, up to 
96.64%, 90.84, and 93.40% degree of accuracy as measured based on the correlation coefficient 
between the measured and estimated value. The developed cubic with interactions stepwise regression 
model (V) was characterized with a high correlation coefficient of 97.2% compared to the other four 
models (I-IV). The developed mortar can be used where repair work is required due to its early 
strength. The outcomes of this study also contributed to waste valorization, dumpsite land 
reclamation, low CO2  footprint, energy consumption reduction, reduction in environmental pollution, 
and the addition of more sustainable alternative binders for structural purposes. Furthermore, the 
outcomes of this work would provide a quick and efficient way of predicting the compressive strength 
of environmental friendly binders with minimal experimental stress and errors inherent in the 
laboratory.
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ABSTRAK

Pelepasan gas rumah hijau dan penggunaan tenaga dari proses pembuatan simen portland 
biasa (OPC) mememerlukan penggantian alternatif kepada sistem pengikat yang lebih mesra alam. 
Bahan pengaktifan alkali (AAM) mula dikenali sebagai bahan berpotensi yang mesra alam dan 
ekonomi menggantikan OPC, walaupun terdapat cabaran untuk memperolehi bahan tersebut dari 
sumber tempatan. Bagi memastikan kelestarian AAM, bahan tersebut hendaklah diperolehi dari bahan 
pemprosesan industri tempatan. Tambahan pula, jika hendak dikomesilkan bahan AAM tersebut, 
kajian tentang ciri-ciri mekanikal dan ketahanlasakan sintesis dari bahan AAM mestilah diiktiraf 
umum. Oleh yang demikian kajian lanjut diperlukan untuk menghasilkan bahan pengaktifan alkali 
‘mortar’yang moden dari sumber tempatan. Terdapat dua jenis bahan sintesis dari Arab Saudi iaitu 
abu gunung berapi (VA) dan abu batu kapur (LSP). Matlamat kajian ini adalah untuk mensintesis 
pengaktifan alkali ‘mortar’ dari bahan VA dan LSP tersebut dan membina satu model menggunakan 
kaedah kepintaran buatan dan teknik statistik di mana ianya membolehkan kekuatan mampatan 
pengaktifan alkali tersebut ditentukan. Bahagian pertama ialah melakukan kajian untuk mensintesis, 
menilai ciri-ciri mekanikal dan ketahanlasakan prestasi ‘mortar’. Kesan pembolehubah seperti nisbah 
pengikat dari 0-1, kepekatan sodium hidroksida (4-14 M), modulus silika (0.52-1.18), pengawetan 
suhu (suhu bilik dan suhu oven, 45-90 °C pada sela 15 °C selama 24 jam), aggregat halus kepada 
nisbah pengikat (1.4-2.2) dan pengaktif alkali kepada nisbah pengikat (0.45-0.55) terhadap kekuatan 
mampatan dan mikrostruktur ‘mortar’ adalah dikaji. Sintesis pengaktifan alkali VA dan LSP ini dikaji 
secara kritis dari segi impak pembolehubah terhadap produk tersebut, ciri-ciri ikatan dan 
mikrostruktur menggunakan alat saintifik XRD, SEM+EDS dan FTIR. Bahagian kedua, beberapa 
model dibuat bagi tempoh pengawetan iaitu satu hari, tiga hari, empat belas hari dan dua puluh lapan 
hari untuk diukur kekuatan mampatan menggunakan kaedah kacukan genetik algoritma (GA), vektor 
dan algoritma regresi. Campuran optimum berdasarkan parameter menunjukkan prestasi kekuatan 
mampatan yang tinggi iaitu 31.3 MPa ialah campuran 60% LSP dan 40% VA dengan 10M NaOH, 
silika modulus 0.89 pada suhu pengawetan 75 °C selama 24 jam. Selain itu, 77% dari nilai kekuatan 
mampatan 27 MPa pada tempoh 28 hari pengawetan pemanasan suhu boleh dicapai dalam masa 24 
jam. Sampel yang disintesis dengan 10 M NaOH dalam masa 28 hari, memberi nilai kekuatan 
mampatan yang lemah iaitu 15 MPa berbanding kombinasi Na2SiO3/10 M NaOH. Pengawetan pada 
suhu rendah di antara 25 - 45 tidak membantu di dalam peningkatan kekuatan mampatan
berbanding pengawetan pada suhu tinggi. Keputusan kajian keberkesanan gabungan bahan VA 
dengan LSP menunjukkan kandungan Silika dan Alumina diperlukan bagi membentuk alumina-silika 
struktur iaitu kation LSP (Ca2 + ) untuk keseimbangan struktur tersebut. Hasil produk yang terbentuk 
dari pengikatan bahan tersebut ialah Anorthite (CaAl2 Si2 O8 ) and gehlenite (CaO.Al2 O3 .SiO2 ). Analisis 
mikrostruktur mendapati bahawa ciri-ciri VA yang mempunyai kelompangan yang tinggi telah 
menjadi lebih padat mikrostrukturnya apabila digabungkan dengan LSP. SEM+EDX menunjukkan 
bahawa kemolaran alkali (10M NaOH) boleh meningkatkan ketumpatan mikrostruktur berbanding 
kemolaran sederhana (4M NaOH). Pengikat yang disintesis oleh 60% VA dan 40% LSP memberikan 
nilai rintangan tinggi terhadap serangan sulfat dan asid. Model hybrid GA-SVR boleh tentukan 
kekuatan mampatan ‘mortar’ bagi tempoh pengawetan selama satu hari, tiga hari dan empat belas hari 
dengan ketepatan 96.64%, 90.84% dan 93.40% darjah ketepatan berdasarkan ukuran pekali kolerasi 
di antara pengukuran dan nilai anggaran. Binaan kiub dengan interaksi model aturan regrasi telah 
dicirikan dengan pekali kolerasi tinggi iaitu 97.2% dibandingkan dengan empat model lain (I-IV). 
Model ‘mortar’ yang dihasilakan tersebut boleh digunakan untuk keija-kerja pembaikan kerana 
kekuatan mampatan pada awalnya menunjukkan peningkatan yang tinggi. Hasil kajian ini juga dapat 
menyumbang kepada penyelesaian masalah pembuangan sisa, penambakan sisa, pengurangan 
pengeluaran CO2 , pembaziran tenaga dikurangkan, pencemaran alam sekitar dapat dikekang. Di 
samping itu bahan buangan tersebut boleh digunakan semula untuk binaan struktur. Selanjutnya kajian 
ini juga boleh digunakan untuk mengurangkan tekanan kerja bagi menentukan kekuatan mampatan 
mortar dengan cekap, pantas dan mengurangkan ketidakpastian dan kesalahan di dalam ujian makmal.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction and Background of the Study

Concrete is the backbone of the built environment, especially in urban areas. 
The construction of infrastructures such as bridges, roads, dams, tunnels, high-rise 
buildings, airports, seaports, power plants, seawalls, wastewater plants, freshwater 
plants, and dykes for social and economic benefits consumed roughly 35 billion tons 
of concrete inclusive of other building materials such as steel, wood, and aluminum 
(Van Damme, 2018). This is generally due to its favourable compressive strength, 
durability, versatility, global availability, high fire resistance, and relatively low cost 
(Imbabi, Carrigan, and McKenna, 2012). Ordinary Portland cement (OPC) plays a 
vital role in the production of concrete. OPC binds the fine and coarse aggregate 
together in the presence of water through the hydration process. OPC world 
production was estimated to be 4.6 billion tonnes in the year 2015 with a projection 
of a four-fold increase by 2050 (CEMBUREAU, 2015). Despite the vital role played 
by OPC in infrastructural development, there are some setbacks associated with its 
production process. The major disadvantage of OPC is that the production process of 
OPC is energy-intensive and significantly leads to the emission of 5-8% of global 
CO2 into the atmosphere which poses a danger to the world ecological systems 
(Duxson et al., 2007; Damtoft et al., 2008; Andrew, 2017). The proliferation of CO2 
that accompanies high demand for cement from the emerging countries, especially 
China and the developing nations has called for alternative materials for construction 
and efficient use of energy (Duxson and Provis, 2008; Van Damme, 2018). To 
mitigate this environmental hazard that goes with greenhouse gas, the cement 
industries are recently focusing on the development of sustainable alternative binders 
such as alkali-activated materials (AAM)) due to its ability to use industrial waste 
materials as based materials (Rafiei, 2016).
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The inclusion of supplementary cementitious materials (SCM) such as palm 
oil fuel ash (POFA), silica fume, slag, fly-ash, and metakaolin as partial substitution 
has reduced the global cement consumption and enhanced the structural and 
structural performance of concrete. The usage of the SCM is largely dependent on 
the availability of the materials in the country. For example, fly ash's annual output 
in China is estimated to be 600 million tons Ma et al. (2017), India, the USA, and 
Malaysia annually produced 112 million tons, 75 million tons, and 6.8 million tons 
respectively (Ghazali, Muthusamy and Wan Ahmad, 2019). The use of fly ash up to 
30 to 70% substitution improved the workability of fresh concrete, enhanced 
mechanical strength, reduce the heat of hydration, and enhanced the durability 
performance of hardened mortar concrete (Halstead, 1986). Alkali-activated material 
(AAM) has been identified as an eco-efficient and economically viable alternative 
for partial or full replacement OPC due to its excellent strength, thermal and low 
permeability (Provis and van Deventer, 2014; Luukkonen et al., 2018a). AAM is a 
system formed by the reaction of soluble alkali activator and aluminosilicate-based 
materials (Provis and van Deventer, 2014). AAM is classified into low calcium (fly 
ash, metakaolin, and volcanic ash) and high calcium (blast furnace slag) binders. The 
main products in low binder AAM could be mainly potassium/sodium 
aluminosilicate hydrate with impregnation of alumina (N-A-S-H and K-A-S-H) 
within the formation. In high calcium binder such as blast furnace slag that is 
synthesized with a mild alkali, the main product is calcium alumina silicate hydrate 
(Najimi, Ghafoori and Sharbaf, 2018). Apart from the enhanced structural and 
durability performance of concrete developed using AAM, it is eco-efficient, 
economically viable, and reduced the proliferation of CO2 presents in the 
atmosphere.

Besides, the challenges of solid waste disposal generated from manufacturing 
and agro-allied industries have necessitated the need to look for a way on how to 
valorize them for construction purposes. These wastes include agricultural waste 
materials such as rice husk ash (RHA), palm oil fuel ash (POFA), or industrial waste 
such as silico-manganese slag (SiMn), ground granulated blast furnace slag 
(GGBFS), fly ash (FA), silica fume (SF), coal bottom ash, paper sludge ash and 
mine tails from mining activities, limestone powder waste (LSP) and volcanic ash 
(VA). These materials are of relevance to AAM synthesis owing to the
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aluminosilicate components that could make them potentially useful as a based 
materials for binder development. This is of utmost interest to civil engineers simply 
because of their pozzolanic nature to generate additional calcium-silicate-hydrate (C- 
S-H) through secondary hydration process especially when they are used as partial 
supplementary cementitious materials (SCM).

1.2 Problem Statements

The waste generated from manufacturing and agro-allied industries has 
caused a serious threat to the environment. This has necessitated the need to look for 
a way to convert waste to construction materials. These wastes include palm oil fuel 
ash (POFA), silica fume, slag, fly-ash, plastic, wood, and papers. The pozzolanic 
materials (PMs) such as slag, metakaolin, fly-ash (FA), and silica fume (SF) can 
generate additional calcium-silicate-hydrate (C-S-H) when used as partial 
supplementary cementitious materials (SCMs). However, in the Kingdom of Saudi 
Arabia, two of the identified solid wastes are VA and LSP, which are by-products 
from volcanic eruption and tiles manufacturing industries, respectively. it was 
reported that about 180,000 km of VA is available in the western region of Saudi- 
Arabi (Moufti et al., 2000). Besides, limestone quarrying generates around 20% to 
25% LSP (Mageed and AbdelHaffez, 2012). The production of limestone blocks or 
tiles involves the use of a diamond cutting saw to chip out a large section of the 
limestone rock into smaller units, these units are further divided into smaller desire 
pieces as building floor tiles. This cutting process generates powder to the tune of 
millions of tonnages. These LSP wastes are deposited in landfills or uncontrolled 
waste fields, the dust particles from the landfills contaminate the air during a strong 
wind blown, these have resulted in environmental, air, and water pollution leading to 
severe health hazards such as asthma. Using VA and LSWP as binders in alkali- 
activated concrete will lead to a reduction in environmental pollution.

Among the two performance indices for concrete structures are mechanical 
properties and durability characteristics. VA has been reported to show great 
resistance to sulfate and acidic attack but it is characterised by long duration setting
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time. This study looked at the feasibility of synthesizing and also evaluate the 
durability performance of alkaline activated binder using volcanic ash (VA) and 
limestone powder waste (LSP). VA and LSP are known to have high silica and CaO 
contents, respectively. Most of the base materials that have been so far used for 
alkali-activated binders contain an appreciable amount of Ca, Si, and Al. The 
skeleton of their binding products includes calcium/sodium-aluminosilicate-hydrate 
or geopolymer gel (C/N-A-S-H) and calcium-silicate-hydrate (C-S-H) that resembles 
C-S-H that constitutes the skeleton of the OPC binder. This idea and assumption 
reinforce the initiation of researching the alkaline activation of the synergy of VA 
and LSP materials. In which the major factors that affect the mechanical, durability, 
and microstructural behaviour of the binary blended products were studied in detail. 
This research has contributed positively to the development of a structural mortar 
that can be used for repair purposes.

AAM is characterised by very fast early strength development, which has 
made it suitable for repair work for structures that need to be put in use as in earliest 
time The determination of mechanical properties for the design of civil engineering 
structures is of great significance to the construction industry. The compressive 
strength (CS) of AAM is one of the keys mechanical properties that dictate its 
suitability for structural purposes. However, the few current existing models for 
strength prediction only used a few parameters that influenced the compressive 
strength. This necessitated the modelling of the compressive strength of mortar 
using machine learning such as support vector regression (SVR) and numerical 
methods. The choice of SVR for this research is due to the limited data points that 
characterized the experimental results in determining the properties of AAM.
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1.3 Research Questions

The research seeks to address the following questions:

1. What is the synergistic effect of VA and LSP on the strength, reaction
products, bond characteristics, and microstructure of binary blended alkali- 
activated VA/LSP mortar (AAVLM)?

2. What is the effect of NaOH concentration, silica modulus, curing
temperatures on the strength and microstructural characteristics of AAVLM?

3. What is the durability performance of alkali-activated mortar in terms of
sulfate resistance and sulphuric acid resistance?

4. What estimating models can be used to predict the compressive strength of
the development model?.

1.4 Aim and Objective of Research

This research aims to develop alkali-activated binders (AAM) by utilizing the
combination of volcanic ash (VA) with limestone powder waste (LSP). The four
specific objectives of this research are the following:

1. To determine the physical, chemical, and microstructural properties of the
based materials volcanic ash (VA) and limestone powder waste (LSP) based 
materials.

2. To determine the effect of alkaline activators parameters and curing
temperature on the fresh, mechanical, and microstructural properties of the 
alkali-activated VA/LSP mortar.

3. To examine the durability performance of alkali-activated mortar in terms of
sulfate resistance and sulphuric acid resistance.

4. To develop a compressive strength prediction algorithm using hybridized
genetic algorithms with support vector regression (SVR) method and 
numerical stepwise regression using key mix parameters as input variables.
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1.5 Scope of the Research

The ranges of values used for the optimization of the mix parameters were 
obtained in the literature.

1. Volcanic ash (VA) and limestone powder wastes (LSP) were used as the base 
materials to develop the alkaline AAM in this study.

2. Sodium silicate and sodium hydroxide were used as activators in this study.
3. The best heat curing duration was 24 hours.
4. The curing of the specimens in this study varied from 25 to 90 °C.
5. The optimization of the materials combination was based on;

(a) LSP will be added in varying percentages to alkaline activated VA such 
that the combined ratio.

(b) ( —L5Pty— ) varied from (0 to 1) at the interval of 0.2.
v ’  v L S P W  +  N P  v ’

(c) Sodium silicate to sodium hydroxide [NS: NH] was within the range of 
0.5 to 1.5 for mortar.

(d) Alkaline to binder ratio [(NS + NH): BD] was within the range of 0.5 
to 0.6.

(e) Sodium hydroxide molarity [MNH] was varied from 4 to 14M.
(f) Fine aggregate to binder ratio [FA: BD] was varied from 1.4 to 2.2.
(g) The optimum free water content (FWC/PMs) ranged from 2 to 10%.

6. The durability performance of the selected concrete mixtures was limited to;

(a) Sulfate attack (5% Na2SO4 , 5% MgSO4 and combination of 2.5% 
Na2SO4 and 2.5% MgSO4).

(b) Acid attack (6% H2SO4).
7. Machine learning (Genetic algorithms and support vector regression (SVR) 

and empirical modelling were used to model the compressive strengths 
AAVLM.

6



1.6 Significance of the Study

This research gave new insightful information about the impact of many 
factors such as temperature, silica modulus, NaOH concentration on the reaction 
products, strength development, bond characteristics, and the microstructure of 
binary blended alkali-activated volcanic ash and limestone powder mortar. The 
mechanical and durability data from this research will be useful in selecting the 
appropriate optimum mix which can be used for producing mortar of zero cement 
and will also contribute to the waste valorization, dump-site land reclamation, low 
CO2 footprint, energy consumption reduction, reduction in environmental pollution 
and addition to more sustainable alternative binders for structural purposes. The 
estimation model developed will enhance the quick estimation of compressive 
strength of mortar system to a high degree of precision while it saves valuable time 
and other material resources.

1.7 Thesis Organization

The thesis is organized into seven different chapters;

C hapter One describes the background, aims and objectives, scope and 
limitations, and importance and motivation for developing alkali-activated volcanic 
ash/Limestone powder mortar.

C hapter Two detailed comprehensively reviews the history, development, 
base materials, and factors affecting the performance of alkali-activated binders. 
Artificial intelligence modelling and regression.

C hapter Three -  In chapter 3 full descriptions of materials and 
experimental designs were presented.
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C hapter Four described the physical and chemical characteristics of VA and 
LSP. The outcomes on the optimization of key parameters that influenced the 
strength and microstructures of binary blend alkali-activated mortar.

C hapter five contains the results and discussions on the resistance of the 
binder to sulfate attack as well as the acidic attack of the synthesized AAVL 
products.

C hapter six presents the results and discussions with detailed explanations 
of compressive strength modelling using artificial intelligence and numerical 
modelling.

C hapter seven summarizes conclusions deduced from this research 
findings and recommendations for future studies.
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