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Abstract 
In this paper, we show that temporal logic can be 

learnt effectively by a connectionist system. In contrast 
with other connectionist approaches in this context, we 
focus more on learning rather than knowledge 
representation. In order to learn from temporal logic 
values, the paper proposes a general three-layer 
connectionist system regardless of the number of logic 
rules, a condition which must have been satisfied in 
previous approaches. A mapping function is proposed 
to convert logic rules to the proper connectionist 
system’s inputs. Then a simulation study is carried out 
for muddy children puzzle. The results of the study 
suggest that an agent embedded with a connectionist 
system can learn temporal logic efficiently. It is 
observed that the connectionist system can increase its 
performance and make fewer mistakes while 
encountering with more produced cases of given 
logical rules.  

1. Introduction 
There is no doubt that logic and connectionist 

systems are two distinct areas in computer science, 
which are related to symbolic artificial intelligence and 
soft computing respectively. It has been recognized 
that the ability to represent and reason about structured 
objects is crucial for rational agents where in this case 
computational logic is a good choice [1]. Also to 
perform very intelligently, rational agents need 
additional abilities such as learning, adapting to new 
environments and degrading gracefully which are not 
reachable within logic-based agents solely [2]. The 
latter abilities can be satisfied by connectionist 
systems. Therefore, great efforts have been undertaken 
to hybridize logic programs and connectionist systems. 
Hybrid approaches have been introduced recently in 
which a connectionist system is applied for knowledge 
representation and reasoning [3, 4, 5, 6].  

To apply connectionist system for knowledge 
representation, specific connectionist system’ 
architecture should be defined at the starting point. The 

architecture is defined based on the primary logical 
rules and the facts that the agent already knows or 
believes. Predefined architecture specification makes 
rational agents inefficient for any cases that new 
logical rules require to be added and learnt by agent as 
time goes on. This inefficiency occurs because once 
the architecture is defined and the weights are adapted 
based on the primary logic rules, it is hard to change it 
to be suitable for more new rules. There are two main 
reasons for this difficulty in reality. Firstly, as logical 
rules are added to rational agent’s knowledge during 
time, an additional task needs to be carried out to find a 
new proper architecture that is suitable with present 
knowledge. Secondly, when the proper weights are 
recognized via learning, changing the architecture will 
destroy all prior knowledge in weights that have been 
gained with primary architecture. Thus, in this paper, 
we proposed a general architecture. Therefore, new 
rules can be learnt by the agent without any 
difficulties; such as finding proper architecture or 
missing prior gained knowledge which both are time 
consuming.     

In this paper, we pursue the logic connectionist 
system proposed by Garcez et al. [3, 4, 5] but with 
focusing on the learning aspect of the logic 
connectionist system rather than knowledge 
representation. In contrast to other logic connectionist 
systems, for example those proposed in [3, 4, 5], we 
propose a mapping function and a 3-layer feed-forward 
connectionist system with a general architecture to 
learn from temporal logic rules. This paper shows that 
there is no need in equal numbers of hidden neurons 
and logic rules, a condition that needs to be satisfied in 
the approach by Garcez et al. [3, 5, 7]. The general 3-
layer connectionist system can be very beneficial when 
an agent performs in dynamic environment which 
learning aspect is essential. 

The rest of the paper is organized as follows. In 
Section 2, the muddy children puzzle is described as a 
motivating example. Then, a temporal logic example is 
provided to show how it can be learnt by a 
connectionist system. A mapping relation from 
temporal rules to connectionist system’s inputs is 
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discussed in Section 3. A simulation study for the 
muddy children puzzle is carried out in Section 4. The 
conclusions and future research directions are 
discussed in Section 5. 

2. Connectionist system for learning 
temporal logic 

The muddy children puzzle [8] has been used as a 
running scenario throughout this paper. The Same 
puzzle has been applied for verification of logic 
connectionist systems in [6, 7]. This section later 
shows how a three layer connectionist system with a 
general architecture can be modeled to learn the 
temporal logic engaged in the puzzle. 

In general, there are n intelligent children, where 
k ( nk ≤ ) of them have mud on their foreheads. They 
will then be asked if any of them knows that they have 
mud on their own foreheads. They have been told that 
at least one of them is muddy. They can see the other 
children’s foreheads and can hear them respond after 
each question is asked. For simplicity, suppose that 
only three of them are playing. First consider the case, 
that 1=k  and child 1 is the muddy one. Since he can 
see the other two children who are not muddy, he 
concludes that he should be the only muddy one. Thus, 
in the first time that they are asked, he says: “Yes, I am 
muddy”. Therefore in the second time both child 2 and 
3 can conclude that they are not muddy. Next case is 

2=k  with the assumption that child 1 and child 2 are 
muddy ones (other cases can be treated similarly). In 
the first time all children answer that they do not know 
if they are muddy or not, since each of them can see at 
least one muddy child. But in the second time, child 1 
can infer that he is muddy, as child 2 was not sure 
about his forehead being muddy so he must see another 
muddy child. Since child 3 is not muddy, thus he 
himself has to be muddy in the forehead. Child 2 can 
infer similar to child 1, so in the second time both say 
“Yes, I am muddy”. The child 3 infers that he is not 
muddy when he is asked for the third time. The final 
case is when 3=k . In this case, in the first and 
second rounds none of the children knows whether he 
is muddy or not. This causes child 1, in third round, to 
infer that if child 2 and child 3 are the only muddy 
ones they must say “Yes” in the second round, thus, I 
myself should be muddy. Child 2 and 3 can infer 
similarly, so all say “Yes, I am muddy” in the third 
round.  

This is an example of a muddy children puzzle in 
which each child as an agent  needs to conclude based 
on his own individual’s and others’ knowledge [6, 7]. 
The logic rules for agent 1 are illustrated in Table 1. 
Agents 2 and 3 can be treated similarly. 

Table 1: Logic rules for agent 1. 
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In Table 1, iK  represents the knowledge operator 

for agent i . Also, propositions ip  and  iq  say that p  

and q  stand true for agent i , where ip  and  iq  mean 
that agent i  is muddy and i  numbers of agents are 
muddy, respectively. Therefore, for example, 1

1r  
means if agent 1 knows that one of the agents is muddy 
and also knows agent 2 and agent 3 are not muddy, so 
agent 1 can conclude that he must be muddy. It is also 
assumed that when none of the antecedents are 
satisfied then the agent replies “I don’t know”.  

A three-layer connectionist system is applied to learn 
from the logical rules in Table 1. In contrast with other 
approaches [3, 4, 5, 9], the connectionist system that is 
applied here focuses more on the learning ability rather 
than knowledge representation. Also, it does not need 
the number of neurons in the hidden layer to be equal 
to the number of logical rules which is assumed in [3], 
[6, 9]. A three-layer connectionist system is illustrated 
in Figure 1 for learning the rules stated in Table 1. In 
this figure, by agent’s status, we mean the answer of 
the agent regarding the question. 

  
 
 
 
 
 
 
 
 
 
 

Figure 1: A connectionist system for an agent to learn the 
rules provided in Table 1. 

In Figure 1, each neuron is connected to the other 
neurons through a connectionist weight.  The ultimate 
aim is to find the best connectionist weights, so that the 
connectionist system can mimic the logical rules that 
are believable by the agent. 
Any agent’s status can be obtained via interaction with 
other agents. The “number of muddy agents”, is a 

My status 

My current knowledge 
regarding number of the 
muddy agents 

Agent 2’s status Agent 1’s status 
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necessary input for each agent to conclude whether he 
himself is muddy or not. In addition, each agent needs 
to have temporal logic rules as those presented in Table 
2 to infer how many agents are muddy [7].  

 
Table 2: Temporal rules for “numbers of muddy agents” in 
agent i . 
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In Table 2, the temporal operator      refers to the 

knowledge that each agent applies in the next round. 
For example, in the first round, if all agents do not 
know their status, then each agent can conclude that 
there exist at least two muddy agents and this 
knowledge can be used for the second round. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Interaction between agents. 

Figure 2 shows the interaction between agents for 
acquisition of knowledge. For the connectionist system 
to be able to learn from logical rules, the proper inputs 
need to be constructed. In Figures 1 and 2, the two 
most left inputs for each agent are easily obtainable. 
But for an agent to infer how many agents are muddy 
at the moment the temporal rules in Table 2 need to be 
converted to proper inputs. In the next section, a rule-

input mapping function is proposed for the muddy 
children puzzle. 

3. Rule-input mapping function 
To apply a connectionist system, the logic rules are 

required to be converted to suitable inputs and outputs.  
For the muddy children puzzle, each agent needs to 

know the others status and the number of muddy 
agents. The agents can easily know about the others’ 
status, since they can see each other. Furthermore, each 
agent can conclude that at least n  muddy agents exist, 
if in thn  round all agents reply “I don’t know” to the 
question. 

Suppose that agent 1 is not muddy himself (although 
he doesn’t know it at the first stage) and can see that 
agent 2 is not muddy and agent 3 is muddy. Thus, in 
the first round agent 3 says he is muddy while the 
agents 2 and 3 say “I don’t know”. When in the second 
time agents 2 and 3 are asked whether they know their 
status or not, they need to remember that one agent has 
claimed his muddy status.  Thus, they can not be 
muddy. In case, they don’t remember that one has 
claimed, they can not infer correctly. So, in addition to 
the number of rounds, another input should be 
considered to recall the claims of other agents. 

Thus, for the puzzle with three agents, four inputs 
are necessary. These are; other agents’ status, round 
number and one input to know if any agent has claimed 
(others’ claim) his status.   

4. Simulation and results 
A muddy puzzle with five agents (children) is used 

for simulation. Then, a three-layer connectionist 
system with 6 neurons in the hidden layer, 6-6-1 
architecture, is applied to learn from different 
situations that an agent encounters randomly. It is 
worth mentioning that if the approaches in [3, 5, 7] are 
applied, more neurons and complicated architecture are 
necessary for a connectionist system. 

Each agent can give three answers: “yes”, “no” or “I 
don’t know” which are implemented as 1, 0 and 0.5 as 
the output for the connectionist system, respectively. 

We trained the agent for 1 to 150 random situations 
with back-propagation learning method. The 
performance of the trained agent is then assessed with 
50 random situations for 100 times. Since after 
training, the connectionists system’s output can have 
outputs in any range, the following conditions are 
applied to have only 1, 0 and 0.5 as the output. 

 
025.0 =≤ outputthenoutputif  
175.0 =≥ outputthenoutputif  

5.075.025.0 =<< outputthenoutputif   
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Figure 3 shows the convergence of the average error 
for 100 runs. Fifty random situations are considered for 
each run. As expected, encountering with more training 
situation, each agent can have better understanding of 
whole puzzle’s rules. The agent average error was 70 
percent in the beginning which decreased to about 10 
percent after encountering with 40 training situations.  

 
Figure 3: A connectionist system for an agent learning the 
rules provided in Table 1.  

Also the agent’s function becomes more trustable 
and the fluctuations are reduced after about 40 
situations and it smoothly converged to zero. 

5. Conclusions and future works 
In this paper, we have applied a connectionist system 

with focus on the aspect of learning logic rules rather 
than knowledge representation [3, 4, 5]. In contrast to 
the approach by Garcez et al. [3, 5, 6, 9], we proposed 
a general connectionist system in which there is no 
need in equal numbers of hidden neurons and the logic 
rules of a problem, a condition which is assumed in [3, 
5, 7, 9]. According to the simulation, a rational agent 
can learn from temporal logic-based situations 
efficiently. After training, it can perform intelligently 
based on the direction of learnt logical rules and can 
guess unlearnt rules effectively. It has been observed 
that as the intelligent agent sees more situations, the 
approximation of expected actual logic rules gets 
better.  

As a future research direction, we are interested to 
investigate cases in which other agents that share the 
knowledge are not very intelligent or trustworthy. In 
this case, for instance, if an agent in muddy children 
puzzle replies that he has mud on his forehead, it might 
not be necessarily correct. This may occur if the agent 
is not intelligent enough. Thus, he might conclude 
wrongly. Consequently, other agents infer incorrectly 
based on the wrong information provided by this agent.  
Since an agent does not know about the other agents’ 

intelligence capability, there is uncertainty. Therefore, 
fuzzy connectionist systems [10, 11] which are able to 
learn from fuzzy input-outputs, can be applied to take 
this uncertainty into consideration. 
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