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Abstract

This study thrashes out some of the visualisatimh @mputational challenges encountered
in the field of neuroscience. With the intentionatddress such computational challenges; we
recognised the particular significance of the iigea solvers and parallel algorithms on
Multi-Core parallel computing atmosphere. In orttedetect tumour cells, 2D and 3D Partial
Differential Equations (PDE) are considered and parad by using Multi-Core parallel
computing atmosphere with visualisation, commumicat and data analysis. The
performance analysis of Multi-Core computing is gereted in provisions of speedup,
efficiency, effectiveness and temporal performawtere the use of 2D and 3D PDEs and
parallel algorithms was found to give in remarkaigisults.
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1. INTRODUCTION

The simulation of human tumour growth by paralléjosithm is the latest invention
nowadays. A brain tumour is an abnormal growthedfsovithout any specific order, with the
disability to control their growths within the bnadr inside the skull, which can be cancerous
or non-cancerous. Brain tumours are the leadingesaaf death by cancer. From a case study
reported in an ABC news report, it was found thmbag 36 people, 1.6% of them suffered
from brain tumour and the rate is increasing culyeMherefore we propose intervention
measures be implemented by the early predictidosrain tumour growths. In this study, the
monitoring and visualisation of the growth of tumaells are performed by large scale
mathematical simulation. The tools of 2D and 3Dapailic type partial differential equations
are accented as the computational engine for tleefyrediction of the cell growth. Clinical
data provides the initial and boundary informationthe properties of tumour.

In the past, several techniques have been impledeatdetect tumour cell growth. Some of
them as described by Deuflhard et al. (1997) warepathematical model of the clinical
system (radio frequency applicator with 8 antenmager bolus, and individual patient body)
that involves Maxwell's equations in inhomogeneonedia and a bio-heat transfer PDE
describing the temperature distribution in the harbady. In their study, the electromagnetic
field and the thermal phenomena are needed to bgwed at a speed suitable for the
clinical environment. Jianhua Xuan et al. (199A)eéhachieved an interactive visualisation by
the use of the state-of-the-art 3D graphics tooBjien Inventor. It possesses a graphical user
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interface that enables the visualisation of the@metructed 3D prostateodel including all
internal anatomical structures and their relatigmsto define tumour volumand distribution
and pathways of needle biopsies. Thus it has ingatthe understanding of prostate cancer
behaviour and current diagnosis-staging methodoldgy addition, Lang et al. (1999)
described an optimisation process specially dedigioe regional hyperthermia of deep-
seated tumours in order to achieve desired ste@adly-emperature distributions. A nonlinear
three-dimensional heat transfer model based ondgatyre-dependent blood perfusion was
applied to predict the temperature. They obtaingtih@l heating by minimising an integral
objective function which measures the distance betwdesired and model predicted
temperatures.

The authors’ previous work represents a new efitcad dynamic solvers for the numerical
solutions of partial differential equations (PDEs)order to visualise tumour cell through
distributed high performance computing (Norma et 2009a and 2009b). A comparative
case study in terms of the visualisations, perforreaanalysis of 2D and 3D parabolic type
partial different equations using multi-core pabtiomputing atmosphere is presented in this
paper. This paper is organised as follows. In eac, mathematical model of 2D and 3D
parabolic PDEs and discretisation of the model prasented, multi-core parallel computing
system was illustrated in section 3, 2D and 3D tmell visualisation was displayed in
section 4. And section 5 presented the performamadysis and discussion of multi-core
computing system and finally, section 6 conclutesgaper.

2. THE MATHEMATICAL MODEL

The model represents both the avascular and tleilaphase of tumour evolution, and is
able to simulate the time when the transition ogclihe evolution problems can be written
as a free-boundary problem in parabolic type joingtth an initial-boundary value problem
in a fixed domain. Cell populations and chemicaces are the model dependent variables
thatdistinguish the physical status of the biologiagiesme in both the tumour mass and the
outer environments. They are fundamentally differ@he cell size is much larger than that
of the chemical factors and macromolecules. This @k surrounded by a membrane and
cannot go through each other; they occupy defipitgsical space. Comparatively, the
chemical species consist of macromolecules that spagad in the intercellular space, are
able to attach to the cell membrane or go throaghuch that they actually do not take up
physical space (Hogea et al., 2006). The cell mmrs are considered important for the
process and the chemical factors that influencé tmetion and proliferation (Preziosi,
2004).

We have considered the fundamental mathematicakimddveloped by Angelis & Preziosi
(2000) which describes the diffusion of cancer cells tiglolrain tissues. The parameter
estimation of the model, the growth rate and thHfusion coefficient will be discussed and
the simulation for brain tumour growth is done hg following parabolic partial differential
eqguation general balance law in local form as dised by researchers such as Angelis & Pre
ziosi (2000), Bellomo & Presiosi (2000), Prezio2d@4), Ambriosi & Preziosi (2002) and
Hogea et. Al. (2006) as below:

g—l: = -OW(u)+0.(Q0u)+T - Lu 1)

Where: T =T (u) is the generation (proliferation / productiongficient
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L =L (u) is the death / decay coefficient of the cells
Q is the diffusion coefficient
W is the drift velocity field.

The model that was represented in this study iexa@nsion to their model froWw = (P, R)
(two dimensions) toV = (P, R, S (three dimensions)

Hence, the brain tumour growth can be written matitecally in 2D and 3D form as

illustrated below. The parameter estimation of itin@del, the growth rate and the diffusion
coefficient were presented and the simulation fairbtumour growth was done by the 2D
and 3D PDEs equation below. The results of the Isitioms was visualised by graphical
presentation and comparisons were made to obt#iers®lution for the challenging tumour
cell visualisation problem:

Two-dimensional (2D) parabolic equation

The mathematical model consists of an evolutioragqgn for the variables = u(t, x) which
was considered to describe, in time, t and spacéhexphysical state of the system. The
variableu includes both the cell population and chemicaldexcproduced in the environment
by the interacting cells. The derivation of the mlokdere described is developed on the basis
of mass balance equations, and are supporteddiydam walk scheme (Bellomo & Preziosi,
2000).

Under suitable regularity assumptions one can ekpa@use ofN,P,QandR, as well as the
use of N, @ =ut,x y,)av,,, and represent the word equation above mathertigt{@agelis
& Preziosi, 2000) from equation (1), we derived @athematical model as:

2 2 (2)
du__a(Pu) _a(R) , 0%, 0Qau (9 3Qdu [
ot ox ay x> 0x ox oy* odyady

With T(t,x,y;)=T,;(t)/AV,; and where the indices, ) have been substituted with the

dependence af and of all coefficients on the space variable. &leenentary volume centred
in the node i( j) is denoted byV,; and its volume byAV, ;. Finally, all cells inv, are

considered as concentrated in the nadg.(While the number of a certain type of cells (or
chemical factors) is denoted By, ; t found in the nodeij) at the timet.

Three-dimensional (3D) parabolic equation

By using finite difference method with certain asgtions, and by the use of the lattice
scheme, we will obtain the three dimensional pdralemguation of the tumour growth. From
equation (1), we derived 3D mathematical model as:

@ = _B(Pu) _B(Ru) _a(s"l) +QL2U +07Q67U+Q@+67Q@+Q672u+6£@+r - Lu

ot ox ay 0z x> oOxox ~oy* oydy ~0z° 0zoz 3)
We will also use the method of discretisation urttlerbasis of Partial Differential Equations
from Numerical Methods (Tan Liang Soon & Ang Kenge@g, 2005). The discretisation
will produce a finite- differential equation whichill later be converted to matrices form.
The matrices will be solved using iterative methodamely Gauss Seidel method by parallel
algorithms. In addition, a Multi-Core parallel coutipg system with the communication
platform of Wolfram gridMathematica is applied fegrformance analysis.
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A. The Discretisation of the 2D and 3D M odel Equations

Based on central finite difference method, therdigsation is shown as follow,

Red Black Gauss-Seidel algorithm was implementati wie parallel algorithm in solving

the 2D parabolic equations for brain tumour visa&lon as,

N (t+at) - N9 (t)
At

=[RLNETY (0 - BN @I +[RTNSD (1) - R'N{ (1)]

+ [QJ N|(k1+iL (t) - (Qij—l + |+l N (0 (t) + Q|l+lN|(+l-<1] (t)]
QNS = Q7 + QNG () + QTN (1)]
Ty = LN (). (4)

In order to solve the parabolic equations for 3@,need to first discretise the model by using
central finite difference method. We have applieé Explicit Method Finite-Difference
scheme to perform discretisation of the model atdio the discretised model as,

Nijk (t+At) - Nijk ® _

At

[PiilNi—l,j,k (t) - Pij Nijk(t)] +[RJ_lNi,j—1,k (t) - RJ Nijk(t)]

+[sf1 N, a0~ SNy (D1 1QLN, (0~ QU + QLN (0

+ Q.+1 i+1,j, k(t)] + [Q‘j_lNi -1k (t) - (Qij_l + Qij+1) Nijk (t) (5)

QN (O141Q) N, 0-(@Q) +Q) N, ()
k+1

+Q N j a0+ T = Ly N (8)

We have formulated the discrete model that involtress use of a discretised form of the
PDEs. The entire fixed computational domaif ¥< 1 and 0< y < 1 are each discretised by
using equally spaced meshes, the interface is & pwst, corresponding bothto x =1 and y
= 1. The domain occupied by the tumour is embeddida larger fixed, time-independent,
computational domain D that is discretised by usiag uniform Cartesian mesh

withAx = Ay = h.

Assume that the tumour has grown approximately ppddent on the initial cell density

(u=200£ 20 m). Initial conditions are given in the form of screte set of Gaussian bumps
of width of the order of the average cell diaméi&0 4 m), placed at random position with

uniform probability over a square surface (Prezia®D4). The small initial proliferating cell

density (0.01) at the centre of the tumour corradsao the early stages of tumour growth

(Tan Liang Soon & Ang Keng Cheng, 2005). While death coefficient from 10to 10° are
taken.
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3. MULTI-CORE PARALLEL COMPUTING SYSTEM

Two or more independent cores are combined intmgles package composed of a single
integrated circuit (IC), called a die, or more dipackaged together into a multi-core
processor. It is available nowadays as dual-corguad-core processor, where a dual-core
processor holds two cores, and a quad-core prachssis four cores. Multiprocessing are
executed by a multi-core processor in a single tamiial package. We have implemented
multi-core parallel computing system in supporthe performance evaluation of 2D and 3D
Partial Differential Equations to detect brain tuman this study, because multi-core parallel
computing system is an execution of the same tasknaltiple cores in order to obtain
results/output faster. Besides, the selection,eggion and sharing of distributed resources
provides the infrastructure to solve distributedlgpem in real life implementation based on
their cost, availability, users’ quality, and perfance of service requirements. Multi-core
parallel computing systems demonstrate enhancembmeseness due to multitasking with
several cores available (Alfredo et al., 2007).iAgke coherent cache might be shared by
cores at the highest on-device cache level or meye hseparate caches and the same
communication is also shared by the processorshéorést of the system. All “core”
autonomously execute optimisations such as pipgjinisuperscalar execution, and
multithreading.

In this study, we have used some multi-threadetiveoé such as Wolfram gridMathematica
and COMSOL multiphysics in order to evaluate thefggenances and visualisations. For
multi-threaded software, multi-core parallel compgtsystem can distribute considerable
performance benefits by adding processing powerh wiast latency. The major
reimbursements will be perceived in applicationshsas customer relationship management,
e-commerce, larger databases and virtualisatidms.nfulti-threaded software splits our large
application’s data set into smaller pieces thatlmaexecuted on in parallel and after the data
has been processed, it is combined back into desthfa set again to obtain the required
results. Through our performance analysis we haweea that, the multi-core machine can
handle such kind of parallel tasks more efficiently

4.2D AND 3D TUMOR CELL VISUALISATION

With COMSOL Multiphysics v3.4, we have performedtizd Differential Equation (PDES)
with Finite Element Method simulations on Multi-@oparallel computation atmosphere. A
heat transfer coefficient of 5 Wi is used as a convective boundary condition atstin
surface to account for natural convection.

Fig. 1: 3D sub-domain model of tumour cell  Fig. 2: 2D sub-domain model of tumour cell visualisation.
visualisation that were vertically sliced.
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5. PERFORMANCE ANALYSISAND DISCUSSION

Current processor architectures only feature 2 taast 4 cores per processor. We therefore
use 8 processors with dual-core each with IBM POWERared-memory PCs for our
experiments, which we believe most closely resemble target designs. Unless otherwise
noted, we use all 16 cores in our tests.

A. Sequential programming analysis

Based on the computation of our sequential progragnibelow is the time execution for 1
CPU with 2 Cores usingme.h, number of iteration and the convergence (stoppiitgria),

Table 1: Time, Convergence and Number of IteraibmrBequence Algorithm

2D PDE 3D PDE
Number of CPU 1 1
Number of Core 2 2
Time execution (Second) 85.032576 0.011684
Number of iteration 200 200
Conver gence (Stopping Criteria) 2.3520 € 17117.428

Table 1 shows that the executive time, convergamcenumber of iteration for both the 2D
and 3D parabolic type PDE with sequential algorithmolving the mathematical model. The
table shows that the executive time for 3D visaaits is much faster than 2D visualisation
which uses 1 CPU with 2 cores. Besides, the coever of 3D visualisation is more than
2D visualisation but the number of iterations perfed by both of them ige same.

After running the parallel computing based on 8 hars of CPU with 16 Cores, the parallel
performance will be analysed from the aspect ofetiexecution, speedup, efficiency,
effectiveness and temporal performance. The follgwoutcomes show that the increasing
number of cores comes with the increased perforggincterms of time execution, speedup,
efficiency, effectiveness and temporal performance.

B. Multi-Core Parallel programming analysis

With Wolfram gridMathematica v.7.0, we have studibé finite difference approximation
that is explicit, in solving the two-dimensionalrgbolic equation. Here the explicit method is
applied in solving the mathematical model by usanguitable sequence iteration method of
Red Black Gauss-Seidel parallel algorithms with sominimise requirements such as
Wolfram gridMathematica on multi-core parallel pragnming system. GridMathematica is a
parallel computing environment that contains aemibn of compute kernels. The master
kernel handles all input, output and schedulingfiams. The master kernel is responsible to
divide the model domain into sub domains and ateb¢bhem to slave kernels. The slave
kernels that involve the actual computation wileente time matching and communication
after each time step. The performance measurermémmilti-core parallel computing were
analysed in respect of time execution, speedupci@ity, effectiveness and temporal
performance.
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The Impact of Number of Cores

The execution time for both 2D and 3D PDEs increageen the number of cores increases.
Based of table 2, the speedup also increases Wkeemumbers of cores increases for both the
2D and 3D PDEs but the 3D PDE performs better than2D using 16 cores. Actually the
real graph of speedup against the number of canetig straight line in figure 4. It is due to
the effect of the communication between the pramsssince the number of cores (16 cores)
is limited, the straight lines are not obtainedhis study. Besides, the distributed memory
hierarchy causes the reduction of the time consgmatess to a cluster of workstations.

Table 2: Time execution, speedup, efficiency, déffeness, and temporal performances
against different number of cores.
Time

Number of

PDE  Processor Number execution Speedup  Efficiency Effectiveness Temporal
of Core Perfor mance
(Second)
1 2 85.032576 1 1 0.011760198 0.011760198
2D 4 8 19.56846 4.345389 1.086347 0.555152142 0.051102641
8 16 8.97895 9.470213 1.183776 0.131839093 0.111371596
1 2 0.011684 1 1 85.58712769 85.58712769
3D 4 8 0.001837 6.36037 1.5900925 865.5919978 544.3658138
8 16 0.000963 12.132918 1.5166148 1574.885514 1038.421599
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Figure 3: Execution time of 2D and 3D PDEs Figure 4: Speedup of 2D and 3D PDEs
against different number of cores against different number of cores
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Figure 5 shows that the efficiency of 3D PDE desesawvhen we used above 8 cores due to
the involvedness of communication. On the otherdhamith the 2D PDE, efficiency
increases when the numbers of cores increases.fakters that cause the decrease of
efficiency are, the imbalance workload, which aigributed among the different cores. The
idle time, time start-up and waiting time of aletlcores to complete the computations are
also the reasons of such efficiency reduction.

Table 2 shows that the effectiveness of 2D PDE edsms when it is used above 8 cores
because of the communications and the idle tinmee Start-up and waiting time of all the
cores to complete the computations but the 3D RizgEeases remarkably when the number
of cores increases. The achievement of resulti@iinicreasing effectiveness is based on the
increase of the speedup. Moreover the effectiveaktise graph increases when the number
of cores is added. A straight line has been forfoethe 3D graph due to the communication
of the 16 cores where 2D has not provided a strdiigh in figure 6 due to the same problem
discussed above.

Figure 7 shows that the temporal performance isg®déor both 2D and 3D PDE when the
number of cores increases. The graph shows alsttaig due to the decreasing of execution
time exceedingly in respect of the increasing nunatbeores.

As summarised in this study, the analysis shows tha performance of the parallel

algorithm on multi-core parallel atmosphere is ioyad by increasing the number of cores
from the aspect of speedup, efficiency, effectigsnand temporal performance. Multi-core
parallel computing system becomes more famous s$ivese computers provide many order
of magnitude raw computing power than the tradalasupercomputers at much lower cost.
Multi-core parallel computers are now commercialailable. They open up new borders in
the application of computers, by which many unsolegpreviously) problems can be solved
effectively.

The results of the analysis for the performance smesments have proved that multi-core
parallel algorithms are considerably better tham sbquential algorithms and that 3D PDE
performs better than 2D PDE in the visualisationbadin tumour on multi-core parallel

atmosphere in terms of speedup, efficiency, effeaiss and temporal performance. The
Red-Black Gauss Seidel is found to be suitabl@éoallel implementation efficiently (Malik

Silva, 2003). Besides, the communication of cores@mputing times ceaselessly affect the
results of speedup, efficiency, effectiveness anapbral performance. The computing of 2D
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and 3D parabolic equation of brain tumour growthvedl suited by the use of using multi-
core parallel computing system because it invobvéarge space of matrix algorithm.

6. CONCLUSION

The key purpose of this study is to evaluate thefopmances of multi-core parallel

computing system and to compare all the aspe@®aind 3D partial differential equation in
solving the grand challenge of brain tumour visetlon problem. Regarding the growth of
brain tumours, a 2D and 3D parabolic model has lobesen to solve this problem by using
standard finite difference method.

The explicit method used to solve the evolutionatigm in this study is the numerical finite
difference method. From this study it is provedtttiee 3D parabolic type PDE performs
better than the 2D parabolic type PDE to visuahlsain tumour on multi-core parallel
atmosphere. Our future comparative study may irev@v3D parabolic type PDE with the
other convergent and unconditional stability comsgs numerical schemes such as AGE
(Alternating Group Explicit) and IADE (Iterative #&rnating Decomposition Explicit). As
for future research, we aspire to find solutionsmprove the speed and performance of the
multi-core parallel computing systems, with ther@gased number of cores to solve the
mathematical model.
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