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ABSTRACT 

          The clinical investigation found that early recognition and intervention are 
crucial for preventing   clinical deterioration in patients in Intensive Care units (ICUs) 
as well as in general wards. Deterioration of patients is predictable and can be avoided 
if early risk factors are recognized and developed in the clinical setting. Existing 
patient deterioration prediction methods generally have some disadvantages such as 
limited to specific patient groups or diseases that lead to lack of generalization, low 
prediction performance, and less optimized model parameter setting. This thesis 
proposes a patient deterioration predictive model based on Long Short-Term Memory 
Recurrent Neural Network (LSTM-RNN) with Genetic Algorithm (GA) optimization. 
The LSTM-RNN predictive model able to accept multiple input and data types in both 
static and dynamic parameters to predict patient deterioration, in terms of mortality 
and sudden transfer of patients from general wards to ICU with good accuracy. 
Another main strength of this predictive model is the input dataset is based on minute-
by-minute time-series data obtained from open-source MIMIC-III research database 
for both model training and testing, hence also contribute to good prediction 
performance. To identify the baseline reference model with optimal performance, the 
setting of LSTM-RNN predictive model is explored using heuristically approach in 
terms of number of hidden layers, number of neurons in the first hidden layer, number 
of epochs, feature selection approach, as well as the impact of data cleaning in data 
pre-processing. On the other hand, the GA acts as an optimization model to further 
enhance the prediction performance of the baseline reference LSTM-RNN predictive 
model by exploration and identification of the optimum parameter settings, which 
include observation window size, prediction window size, and number of neurons in 
the first hidden layer.   In this study, the proposed predictive model is benchmarked 
with other related work in terms of various prediction model, data sequence type, 
patient’s age involved, number and types of features, dataset splitting ratios, prediction 
and observation window size and data source. For standard benchmarking result 
comparison, the selected performance metrics includes accuracy, area under receiver 
operating curve (AUROC), and test loss. The benchmarking results show that the 
proposed model outperforms other related models in general as it is capable to predict 
patient deterioration up to six hours before the onset with minimum prediction 
accuracy above 0.80 as recommended in the clinical setting. In specific, the best 
optimum LSTM-RNN predictive model after GA optimization able to achieve 
AUROC of 0.933, prediction accuracy of 0.921, test loss of 0.435, longer prediction 
window of 4.77 hours while reducing the observation window from 24 hours to 9.6 
hours (60%) at the same time. The proposed patient deterioration prediction model 
based on LSTM-RNN, and GA will be very useful to clinical team as they have more 
sufficient time window to take prompt medical action before the onset of deterioration. 
As a result, this will help to reduce the mortality rate of patients or sudden transfer of 
patients from general wards to ICU. 
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ABSTRAK 

          Penyelidikan klinikal mendapati bahawa pengecaman dan intervensi awal 
adalah sangat penting untuk mencegah kemerosotan klinikal pada pesakit di Unit 
Rawatan Rapi (ICU) dan juga di wad umum. Kemerosotan pesakit dapat diramal dan 
dielakkan sekiranya faktor risiko awal dikesan dan dikembangkan dalam penetapan 
klinikal. Kaedah ramalan kemerosotan pesakit yang sedia ada secara umumnya 
mempunyai beberapa kelemahan tertentu seperti terhad kepada kumpulan pesakit atau 
penyakit tertentu yang menyebabkan kekurangan generalisasi, prestasi ramalan yang 
rendah, dan tetapan parameter model yang kurang dioptimumkan. Tesis ini 
mencadangkan sebuah model ramalan kemerosotan pesakit berdasarkan Rangkaian 
Neural Berulang Ingatan Jangka-Pendek Panjang (LSTM-RNN) dengan 
pengoptimuman Algoritma Genetik (GA). Model ramalan LSTM-RNN ini dapat 
menerima pelbagai input dan jenis data dalam kedua-dua parameter statik dan dinamik 
untuk meramalkan kemerosotan pesakit, dari segi mortaliti dan pemindahan pesakit 
dari wad umum ke ICU secara tiba-tiba dengan ketepatan yang baik. Satu lagi kekuatan 
utama model ramalan ini adalah set data inputnya adalah berdasarkan data siri masa 
minit-demi-minit yang diperolehi dari pangkalan data penyelidikan sumber terbuka 
MIMIC-III untuk latihan dan ujian model, oleh itu juga menyumbang kepada prestasi 
ramalan yang baik. Untuk mengidentifikasikan model rujukan asas dengan prestasi 
yang optimum, penetapan model ramalan LSTM-RNN adalah dieksplorasi dengan 
menggunakan pendekatan heuristik dari segi jumlah lapisan tersembunyi, bilangan 
neuron pada lapisan tersembunyi pertama, bilangan zaman, pendekatan pemilihan ciri, 
serta impak pembersihan data dalam pra-pemprosesan data. Dari sudut lain, GA 
bertindak sebagai model pengoptimuman untuk meningkatkan lagi prestasi ramalan 
pada model ramalan LSTM-RNN rujukan asas dengan penerokaan dan 
pengenalpastian tetapan parameter yang optimum, di mana meliputi ukuran tetingkap 
pemerhatian, ukuran tetingkap ramalan, dan jumlah neuron pada lapisan tersembunyi 
pertama. Dalam kajian ini, model ramalan yang dicadangkan adalah dibandingkan 
dengan karya lain yang berkaitan dari segi model ramalan yang pelbagai jenia, jenis 
urutan data, usia pesakit yang terlibat, bilangan dan jenis ciri, nisbah pemisahan set 
data, ukuran tetingkap ramalan dan tetingkap pemerhatian serta sumber data. Untuk 
perbandingan keputusan yang standard, metrik prestasi yang dipilih merangkumi 
ketepatan, kawasan di bawah keluk operasi penerima (AUROC), dan kehilangan ujian. 
Hasil perbandingan menunjukkan bahawa model yang dicadangkan mengatasi model-
model lain pada umumnya kerana ia mampu meramalkan kemerosotan pesakit 
sehingga enam jam sebelum permulaan dengan ketepatan ramalan minimum yang 
melebihi 0.80 seperti yang disarankan dalam tetapan klinikal. Secara khusus, model 
ramalan LSTM-RNN optimum yang terbaik setelah pengoptimuman GA dapat 
mencapai AUROC 0.933, ketepatan ramalan 0.921, kehilangan ujian 0.435, tetingkap 
ramalan yang lebih panjang selama 4.77 jam sambil mengurangkan tetingkap 
pemerhatian dari 24 jam kepada 9.6 jam (60%) pada masa yang sama. Model ramalan 
kemerosotan pesakit ini yang dicadangkan berdasarkan LSTM-RNN dan GA akan 
sangat berguna kepada pasukan klinikal kerana mereka mempunyai masa yang lebih 
mencukupi untuk mengambil tindakan perubatan yang cepat sebelum permulaan 
kemerosotan. Justeru itu, ini akan membantu mengurangkan kadar mortaliti pesakit 
atau pemindahan pesakit secara tiba-tiba dari wad umum ke ICU. 
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CHAPTER 1  
 

 

INTRODUCTION 

This chapter discusses the study background to illustrate the research 

motivation, followed by the problem statement, the research objectives and its 

associated scopes, as well as research significance. 

1.1 Background of the Study 

Identifying of patients who have a high deterioration risk is vital so that 

treatment decisions, quality assurance, and resource use management can be guided to 

reduce mortality rate. Patients who are admitted to ICUs and survive hospitalization 

have a high mortality rate in the six months after discharge (Wunsch et al., 2010). A 

lot of these post-discharge deaths are within patients transferred to other acute-care 

hospitals (Vasilevskis et al., 2009) or long-term acute care facilities (Hall et al., 2012). 

Unidentified deteriorations could delay the ICU transfer of patients, which would 

necessitate resuscitation in as much as 67% of cases or eventually result in deaths 

(Wellner et al., 2017). A report by the American Health Association (AHA) in 2015 

showed that about 209,000 in-hospital cardiac arrests occur annually in the United 

States of America (USA) (Kolte et al., 2015). There are approximately 2,300 annual 

cases of cardiac arrests in Swedish hospitals as reported by the Swedish Resuscitation 

Council, which oversees 95% of Swedish hospitals (Spångfors et al., 2016). It was 

also found by the 2010 USA government investigation that 44% of adverse events 

could have been clearly or likely prevented (Levinson and General, 2010). Some 

researchers in New Zealand (Davis et al., 2003), the United Kingdom (UK) (Vincent 

et al., 2001), and Canada (Baker et al., 2004) used deterioration as defined by the result 

of health care management instead of the underlying disease process in the assessment 

of more than 25,000 patient records, from which 8% - 17% of admissions were related 
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to unfavourable events, preventable deteriorations made thought to be around 37% - 

51%, and 7% - 19% ended in disability or death. 

To this end, several studies have put forward different definitions of 

deterioration that are dependent on the various causes and the involved critical 

procedure.  For instance, some studies (Churpek et al., 2013; Churpek et al., 2014a; 

Hu et al., 2016b; Smith et al., 2013) defined the deterioration as the patient being 

transferred to an ICU or experiencing a cardiac arrest, while there are other researchers 

related the term to patients who are admitted, transferred to another specialised 

hospital for emergency surgical treatment, or died after revisiting the emergency 

department (ED) (Mochizuki et al., 2017). There is also a research demonstrated that 

deterioration is primarily connected with organ dysfunctions like liver failure, kidney 

injury, respiratory failure, ICU admission, or death at a hospital (Quinten et al., 2018). 

Further, deterioration have also been defined by several studies to be a patient’s sudden 

transfer from the general ward to an ICU with positive pressure ventilation, 

vasopressors, fluid resuscitation, or any immediate procedure that may be conducted 

between 2 hours pre or 12 hours post transfer (Bonafide et al., 2014; Wellner et al., 

2017). (Henriksen et al., 2014) has also defined the deterioration as a patient deviating 

from the specified normal range in the 2 - 24 hours interval after hospital admission. 

Nevertheless, in the present, the physiological importance of deterioration is 

appreciated and the exact definition of it is still vague among the scientific community 

(Zheng and Shi, 2018).  

Deterioration of patients in can be avoided by utilizing technologies that detect 

deterioration in a timely manner, by logging several data types in health informatics 

systems, and processing the data by utilizing software analysis models with accurate 

performance (Bonnici et al., 2013; Findlay et al., 2012; Stewart, 2009; Stewart 2011). 

There are many excellent data-driven learning models could be implemented in 

clinical decision support system by the implementation of electronic health records 

(EHRs), Markov models (Santamaria Ariza et al., 2020) and dynamic Bayesian 

network (Abebe and Tesfamariam, 2020) to study disease development through 

modelling the temporal characteristics of EHRs. Moreover, preventing the occurrence 

of patients' deterioration in an adequate time window turns into a need in medicinal 
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services communities and biomedical research fields. It is also imperative that hospital 

care quality is enhanced significantly so that unwanted results are reduced. The notable 

hypothesis is recent technology can be used so that models that were developed using 

dynamic variables (e.g., vital signs and/or lab tests) and static variables (e.g., age, 

gender, and admission type) are utilized to build and strengthen an automated 

classification algorithm that can predict deterioration accurately.  

In this study, the patient deterioration is defined as the patients either suddenly 

being transferred to ICUs from general wards (i.e., urgent admission type), or ICU 

patients suddenly dying (Churpek et al., 2013; Churpek et al., 2016; Edelson et al., 

2018; Smith et al., 2013). Studies by a few researchers (Goldhill and Sumner, 1998; 

Lundberg et al., 1998) showed a sudden ICU transfer is related with worse outcomes 

and increased mortality. The complex patterns in patients' longitudinal data affect the 

clinical interventions and ICU deaths (Catling and Wolff, 2020). As such, this study 

intends to forecast these events more reliably prior to their occurrence so suitable pre-

emptive action can be taken by the hospital staff. 

The Early Warning Score (EWS) systems are currently the common utilized 

models to improve the early detection of deteriorating patients (Hu et al., 2016b; 

Kivipuro et al., 2018; Panday et al., 2017; Quinten et al., 2018; Singer et al., 2016). 

These systems provide early notification or warning to medical teams to take suitable 

and prompt medical action to save patients’ lives. The design of these systems aims to 

solve sudden harmful events by combining various measures into an exact score that 

is quantifiable. The systems normally are integrated with the hospital equipment, such 

as patient monitor to track when patients reach certain thresholds. For example, "Track 

and Trigger" (T&T) systems track vital signs based on their periodic measurement and 

act (triggered) when patient vital sign reaches a specific threshold value. Fletcher et al. 

(Fletcher and Cuthbertson, 2010) showed that T&T systems are based on an erroneous 

foundation which derives from huge datasets that are regressed logistically, resulting 

in the prediction of death by using certain parameters. Some hospitals have asserted 

that the problem of deteriorating patients can be solved by continuous monitoring via 

measuring the impact of diseases on patients' daily lives (Edelson et al., 2018; 
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Newman, 2017; Tilly et al., 1995). However, the long hours continuous monitoring 

would consume great human resources of medical teams in hospitals.  

Identifying deterioration prior to its onset is a huge and challenging issue in 

modern healthcare. Much research have proposed different predictive models to 

reliably predict such occurrences. Based on sufficient observation window and 

prediction window, the crucial techniques used to solve patient deterioration problems 

are machine learning and deep learning models (Bonnici et al., 2013; Choi et al., 2017; 

Goodfellow et al., 2016; Shotton and Findlay, 2012; Stewart, 2009; Stewart 2011; 

Ward et al., 2016b). Machine learning applies computational methods that depend on 

past experience to predict a task or outcome perfectly (Ward et al., 2016a). In contrast, 

deep learning constitutes an operation to refine information in multiple stages, where 

highly purified information is gained after being put through successive filters (Bengio 

et al., 2017). However, unlike deep learning models, machine learning-based models 

cannot frequently provide accurate performance and explicit interpretability; as a 

result, this research aims to propose a generic prediction framework based on deep 

learning models. Technologies used for deep learning produce approximately 2.5 

quintillion bytes of data daily, the volume, velocity, and variety of information enable 

the “Big Data” analysis (Masud and Al Harahsheh, 2016; Nepal et al., 2015). The 

highest quality personalised healthcare is provided by big medical data and it is a vital 

factor in the success of a healthcare industry that has been revolutionised (Cheng et 

al., 2016; Madsen, 2014). Therefore, this study aims to utilize data from various types 

of patients so that patient deterioration can be detected in real-time, and the occurrence 

can be predicted. This study is vitally needed so that its results can be used to save the 

lives of more patients and in the provision of better healthcare services for people in 

general. 

1.2 Problem Statement 

This research takes into consideration of three major research problems of 

prediction of deterioration for patients. The first problem is the framework of 

deterioration-based predictive models. The second problem is the shortcoming of 



 

5 
 

current predictive models based on machine learning / deep learning. The third issue 

is the optimization problem for prediction model. 

The first outstanding issue in the framework is the impractical workflow (i.e., 

sequence of processes) embedded in a predictive model. One example of an unrealistic 

approach is using laboratory tests as the only variables in the patient deterioration 

prediction (AlNuaimi et al., 2015; Masud and Al Harahsheh, 2016). Each patient 

undergoes different medical tests, and a particular patient might need undergo the same 

tests more than once. Patients are initially placed into different groups according to 

their demographic profile, and every group is further clustered into groups of patients 

with similar test profile. After that, every group is utilized to implement a predictive 

model. However, the results from such models cannot be benchmarked (Masud and Al 

Harahsheh, 2016). Also, some previous works (Clifton et al., 2011; Hu et al., 2016b) 

performed studies on hospitals specialized in certain diseases, as well as patients with 

targeted diseases like cancer and suspected infection or sepsis (Masud and Al 

Harahsheh, 2016). As a result, a strong influence on the final model causes a high 

variance in behaviour and performance. This also negatively affects the generalization 

of the proposed prediction framework based on selected models. 

Besides, certain proposed deterioration prediction framework is most focusing 

on in-hospital deterioration outcome evaluation based on specific factor. For example, 

(Jones et al., 2013) evaluates an in-hospital deterioration in USA focus on medical 

neglect. This predictive model-based framework takes a long time, uses a design that 

is retrospective, sometimes considers adverse events caused by pre-hospital treatment, 

and ignores the fact that sometimes part of the natural dying process involves 

deterioration. Superior frameworks are required to categorise patient risks in a 

prospective and stratified approach while they are being admitted, and at the same time 

updating the approaches to educating and care models in preventing, identifying, and 

improving care for clinical deterioration. 

Another research issue is overcoming the performance issue of existing 

deterioration predictive models. A few researches (Garla and Brandt, 2012; Seide et 

al., 2011) have proposed patient deterioration prediction model based on machine 
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learning, but they are inadequate because they only consider the most crucial of feature 

engineering in machine learning workflow. A number of researches also utilized 

logistic regression statistical model to build patient deterioration prediction model in 

ICUs (Churpek et al., 2016). These researches (Churpek et al., 2016; Kate et al., 2016; 

Mao et al., 2012; Quinten et al., 2018; Spångfors et al., 2016), obtained a minimum 

Area Under Receiver Operating Curve (AUROC) results of 0.679, 0.68, 0.74, 0.76, 

and 0.77, respectively. In fact, Machado et al. (Machado and Cortez-Pinto, 2013) 

illustrated that models with the AUROC value of 0.5 are considered randomly 

predictive models, whereas models with the AUROC value higher than 0.8 represent 

good discriminatory models. 

There are also previous works (Mao et al., 2012; Ong et al., 2012), proposed 

support vector machine (SVM) to predict cardiac arrest within the next 72 hours and 

achieved clinical deterioration with AUROC of 0.781 and 0.775, respectively. 

Alnuaimi et al. (2015) used a decision tree model to predict mortality and obtained an 

accuracy of 0.77. Ghosh et al. (Ghosh et al., 2017) used coupled hidden Markov 

models (CHMMs) to predict septic shock and received a likelihood of 0.71. As a result, 

it can be observed that most of the obtained AUROC values are less than recommended 

0.8 and hence conventional machine learning predictive models suffer from inaccurate 

performance.  

Current models are also subject to robustness due to data uncertainty problems 

like missing data, null values, and irregular sampling clinical measurements. 

Quantitative research regards missing data as the norm, but the effects of missing data 

in quantitative studies are occasionally severe, resulting in biased parameter estimates, 

loss of information, and an inferior findings’ generalisability (Dong and Peng, 2013; 

PANDA). To compensate the problem of missing data, a few researchers  (Mochizuki 

et al., 2017) limited their analyses to patients with full data (i.e., no missing data is 

associated with any selected variable), which results in an approach that is not 

applicable in the real world. A few current models (Wellner et al., 2017) made no 

effort to account for missing values. Thus, the undertaking of this work is proposing a 

predictive patient deterioration model that adopt superior techniques for raw data pre-

processing to evolve data uncertainty issues. 
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Moreover, it is necessary to determine an optimal interval of time-series 

windows involved in predictive models. Past researchers mainly took parameter values 

and settings that were defined by other studies to use in their work. However, the 

parameters of predictive models need to be adjusted for various applications and 

databases to enhance their discrimination capability (Rashedi et al., 2013). Previous 

works (Caballero Barajas and Akella, 2015; Celi et al., 2012; Ghassemi et al., 2014; 

Ghassemi et al., 2015; Hoogendoorn et al., 2016; Hug and Szolovits, 2009; Johnson 

et al., 2017a; Joshi and Szolovits, 2012; Knaus et al., 1981; Le Gall et al., 1993; Lee 

and Maslove, 2017; Lee et al., 2015; Lehman et al., 2012; Pirracchio, 2016; Potes et 

al., 2017; Ripoll et al., 2014; Vincent et al., 1996) involved a 24-hour observation 

window, whereas others (Che et al., 2018; Deng et al., 2009; Harutyunyan et al., 2017; 

Joshi et al., 2016) involved a 48-hour observation window to achieve acceptable 

prediction performance; hence increasing the volume of data. The long duration of 

observation window will have great demand in data storage and compute intensive 

operations. Thus, this study aims to solve the research problem of decreasing the 

window of observation from 24 hours to only 4 hours (i.e., an 83% reduction) while 

still maintaining an acceptable accuracy rate in its prediction.  

Further, this issue also facing challenge due to inability of automatic techniques 

to tune several models at the same time without conducting a grid search or using the 

trial and error approach (Yuan et al., 2018). In predictive models, it is well known that 

bias will be larger for smaller observation windows. This issue can be mitigated if the 

observation window is sufficiently long. It is important to carry out the optimization 

and monitoring of individual units as well as the whole process, which can largely 

improve the structure of predictive models of deterioration of patients. As a result, it 

is necessary to build an optimization algorithm that can automatically tune several 

important parameters and settings at the same time, such as observation window, 

prediction window, and the number of units in hidden layers (either separately or in 

combination) to maximize the prediction performance. Towards this end, the 

optimization problem will be solved using a modified genetic algorithm (GA). 

Furthermore, implementing the proposed models using advanced hardware to 

overcome challenges of gain (i.e., execution time), estimation time, and testing 

processing time is a necessity in proposing predictive models. 
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1.3 Objective 

Based on the research problems, this study aims to develop a generic and robust 

patient deterioration prediction framework targeted for ICU patients. The detail 

objectives are as stated below: 

(a) To develop an accurate predictive model that can accept multiple input and 

data types using Long Short-Term Memory (LSTM). 

(b) To design an automated optimization approach using the Genetic Algorithm        

(GA) for identifying optimum parameters for accurate prediction of patient 

deterioration. 

1.4 Scope of Work 

To fulfil the aforementioned research aims and objectives, this study has 

limited its research scope as shown in Figure 1.1. The prediction model is developed 

based on long-short term memory - recurrent neural network (LSTM-RNN) deep 

learning algorithm, to predict the patient deterioration in terms of patients either 

suddenly being transferred to ICUs from general wards, or ICU patients suddenly 

dying.  The input of LSTM-RNN predictive model consists of two categories of data, 

which are static data and dynamic data obtained from Medical Information Mart for 

Intensive Care (MIMIC-III) version 1.4 “restricted access” database based on 

inclusion criteria of patient age more than 15 years old, first admission, and patients 

who have stayed more than 5 hours in ICU. Referring to figure 1.1, the static data 

consists of age, gender, and types of admission, whereas the dynamic data consists of 

seven vital signs, eight laboratory measurements, and Glasgow Come Scale (GCS) in 

the form of minute-by-minute time trends where each patient's selected parameter of 

interest is updated in every minute. The impact of data pre-processing technique and 

different feature selection approach to prediction performance is studied and 

compared. The baseline reference model is developed using heuristic approach to 
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identify optimal parameter setting in terms of number of hidden layers, number of 

epochs, and number of neurons in the 1st hidden layer. 

On the other hand, the optimization model is designed based on Genetic 

Algorithm (GA) to further optimize the performance of the developed LSRM-RNN 

baseline reference model. It is conducted by auto exploration of different configuration 

setting in terms of observation window size, prediction window size and number of 

neurons in the first hidden layer through performance trade-off analysis. The 

performance metrics used for predictive performance evaluation and comparison 

includes accuracy, AUROC, and testing loss. For performance comparison, this work 

also develop other two different predictive models based on logistic regression (LR) 

and Support Vector Machine (SVM) using standard libraries provided in PostgreSQL 

and Jupyter Notebook. This research employs comprehensive benchmarking 

experiments with related previous works based on prediction task, sequence type, ages 

involved, number of features, splitting ratios, observation window, data source, 

performance metrics, and hardware features. All the modelling and performance 

analysis are executed in a virtual Graphical Processing Unit (GPU) provided by 

Google Collaboratory as well as a conventional Central Processing Unit (CPU).  

1.5 Significance of the Study 

The implementation of the proposed deep learning approach is expected to 

result in a new model that possesses reliable accuracy to predict patient deterioration. 

It is expected that the proposed model will assist in building a prediction model based 

on “Big Data” which has enhanced prediction accuracy. The clinical state of patients 

will be identified using this model via present and past data that comprise several 

parameters and measurements (i.e., periodic data). The interaction between various 

parameters is currently ignored by the existing prediction models. This study 

contributes by revealing previously unknown relationships between many variables 

(predictors) which could result in useful diagnostic or prognostic insights. The study 

also proposed the required clinical intervention to alleviate the effect of these events.  
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Moreover, this research uses definitions of deterioration, where its endpoint measure 

will be either mortality or sudden transfer to ICUs, which is used by researchers to 

obtain a better classification of patients.  

In this study, the proposed predictive model is implemented using the state-of-

the-art GPU virtual machine provided by Google Colaboratory. Moreover, the study 

uses a minute-by-minute time-series approach. This approach enables the proposed 

model to obtain highly accurate results. The deep learning predictive model’s ability 

to identify patterns in multivariate time-series of different clinical measurements is 

empirically evaluated by this research. To overcome the impractical workflow of 

predictive models that use one form of data, this study utilizes the individual and 

combined effectiveness of different types of variables (i.e., vital signs, laboratory 

measurements, GCS, and demographic data). Previous works face the problem of 

generalization due to data from hospitals specialized in certain diseases, or patients 

with certain diseases. In this study, data extracted from an open source that can be 

easily benchmarked and generalizing the results achieved. 

Current predictive models suffer from weakness in performance due to using 

machine learning models that require feature engineering. However, this research 

proposes an LSTM-RNN deep learning model that does not require feature 

engineering. Existing predictive models use conventional hardware suffers from 

challenges in gain, estimation time and testing processing time. This work proposes an 

advanced hardware that overcome challenges in gain, estimation time via using a 

virtual GPU. The ad-hoc frameworks proposed by previous studies can be improved 

by the generic prediction framework proposed in this research, which will result in 

predictions of higher accuracy. The proposed predictive model could reduce the 

required observation window for the prediction task while improving the performance. 

In fact, the proposed significant small size of observation window could obtain higher 

results which outperformed all previous works that utilize different sizes of 

observation window (i.e., 48 hours and 24 hours). The proposed predictive model 

achieved accurate performances when using a prediction window with sizes longer 

than 1 hour.  
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The proposed optimization algorithm based on GA could improve the accuracy 

obtained by the predictive model. It also could increase the prediction window. It also 

reduced the observation window by 60% compared to the size of observation windows 

used by most of the studies used in the literature to predict the deterioration of patients 

(i.e., 24 hours). In addition, the proposed optimization algorithm could reduce test loss. 

The study identifies the most important medical lab tests without using any informed 

domain knowledge. Some current predictive models implement the structure of the 

models via trial and error, whereas this study propose an optimization model based on 

GA to determine the size of the observation window, prediction window, and number 

of units in the hidden layer.  

1.6 Thesis Organization 

The rest of the thesis is organised as described below. A comprehensive 

literature review of works related to this study is presented in Chapter 2. The 

methodology for proposing a generic prediction framework is discussed in Chapter 3. 

It also discusses the detail of different layers that form the generic prediction 

framework. Moreover, modelling software libraries and tools is demonstrated in this 

chapter. It also illustrates the performance metrics and framework verification strategy.  

Chapter 4 covers the details for the modelling and algorithmic development in the 

proposed predictive model based on LSTM-RNN performed in this thesis. It also 

includes the findings of performing the research methodology to obtain the dataset and 

the results of performing feature selection. A description of different sizes of 

observation window and prediction window is also included. Chapter 5 illustrates the 

test works that confirm the usefulness and dissect the presentation of the proposed 

modified optimization model based on multi objective GA. Chapter 6 presents the 

experimental works that verify the functionality and analyse the performance of the 

proposed predictive algorithm based on LSTM-RNN and the proposed optimized 

algorithm based on GA described in Chapters 4 and 5, respectively. It also includes 

the benchmarked results of performance against the related previous works. Chapter 7 

shows the future works, contributions, and conclusions of this research.   
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