
 

PARTICLE SIZE EFFECT ON SUPERCAPACITOR PERFORMANCE MADE BY 

COCONUT SHELL ACTIVATED CARBON 

 

 

 

 

 

 

 

 

SITI AISYAH BINTI ZULKEFLI 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Philosophy 

 

 

School of Mechanical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

DECEMBER 2020 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is deicated to my father, mother, sibling and Akhwat for giving 

me tremendous support. May this knowledge be benefit for mandkind and islam  



v 

ACKNOWLEDGEMENT 

I am grateful to Allah swt for giving me the strength and sudden inspiration 

during the whole process of finishing my master degree. I would like to give thanks to 

my main supervisor Dr Ibtisham bin Ardani for giving me some supports and advice. 

Before this, Prof. Ir. Dr. Farid Nasir bin Haji Ani had become my main supervisor for 

four years of my master degree. I appreciate of what had Prof. Ir. Dr. Farid Nasir bin 

Haji Ani done in guiding me to search the people that can help me doing my research 

and giving me the chance of using the provided lab equipment. Special thanks to Dr. 

Zulkarnain bin Ahmad Noorden for giving me the possibility of running some analysis 

for this research. Without it, it may not be possible. From the bottom of my heart, I 

really appreciate my parents for sacrificing their money in helping me to support my 

master degree. I will never forget akhwat and my friends for giving me mental and 

spiritual support. The chance of studying in Universiti Teknologi Malaysia (UTM) 

after finishing my degree in Universiti Sains Malaysia was a truly enjoyable life 

despite of up and down had happen in my life. I give my thanks to Universiti Malaysia 

Pahang, UTM school of mechanical engineering, UTM faculty of science and UTM 

University Industry Research Laboratory for providing their lab analysis services. I 

also give my thanks to Imerys and Gaia Sdn Bhd for giving their samples to make this 

research successful. 

  



vi 

ABSTRACT 

Over the years, biomass-based activated carbon (AC) supercapacitor electrodes 

have gained interest among researchers because there are wide ranges of abundant 

biomass such as coconut shell that can easily convert into AC. Fabrication of the 

electrode using AC fine particle and small portion of coarse particle has been 

recommended in the past. It is found that the particle size could potentially affect the 

electrode’s physical and electrochemical properties. Nevertheless, information on the 

relationship between particle size and supercapacitor performance is very limited. The 

main objective of the research was to characterize a coconut shell-based AC as 

supercapacitor’s electrode in term of its physical and electrochemical properties at 

different particle size distributions. Particle size distributions of sieved AC powders 

that came from 75, 150, 180 and 300 μm mesh size were measured using laser 

diffraction method. Each AC electrode was fabricated with 88%wt AC powder, 6%wt 

carbon black and 6%wt polyvinyl difluoride. The electrodes were denoted as 

75AC/+0AC, 75AC/+150AC, 75AC/+180AC and 75AC/+300AC. The 75AC/ was 

fabricated based on 90% AC powder with 75 μm particle size while the ‘+’ sign 

indicates the mixture of 10% coarse AC particle powder which comprise of either 150, 

180 or 300 μm. Both AC powder and fabricated electrodes were characterized their 

physical properties in terms of surface area, pore size, micropore volume and 

morphology. Surface area and micropore volume were calculated using the Brunauer-

Emmett-Teller (BET) and Barret-Joyner-Helenda (BJH) models’ respectively. The 

electrochemical properties of AC electrodes were analysed using cyclic voltammetry, 

galvanostatic charge discharge and electrochemical impedance spectroscopy. It was 

found that some of the AC pore structures were blocked by carbon black after the 

fabricating process which eventually led to major reduction in surface area. The 

addition of coarse particles causes microcrack on the electrode surface in all samples. 

However, it increases the surface area and specific capacitance of the electrode where 

both increments increase the energy density of the supercapacitor. As a comparison 

between 75AC/+0AC and 75AC/+150AC, the electrode BET surface area, BJH 

micropore volume and specific capacitance increased up to 20.00%, 20.12% and 

22.74%, respectively. On the other hand, the addition of higher coarse particle size 

than +150AC has demonstrated a major drawback on the electrolyte decomposition. It 

can be concluded that the performance of supercapacitor can be improved further with 

the mixture of fine and coarse particles as opposed to single composition of fine 

powder alone. However, the coarse particle size should not be too big as it will affect 

on the electrolyte decomposition properties. 
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ABSTRAK 

Sekian tahun, elektrod superkapasitor yang berdasarkan karbon teraktif (AC) 

biojisim telah mendapat perhatian dari para pengkaji kerana terdapat banyak biojisim 

seperti tempurung kelapa yang mudah digunakan untuk dijadikan sebagai AC. 

Fabrikasi elektrod menggunakan campuran zarah AC yang halus dan sebahagian zarah 

kasar telah dicadangkan pada masa lalu. Didapati bahawa saiz zarah berupaya 

memberi kesan kepada sifat fizikal dan elektrokimia elektrod. Namun, maklumat 

tentang hubungan antara saiz zarah dan prestasi superkapasitor adalah sangat terhad. 

Objektif utama kajian ini adalah mencirikan AC berasaskan tempurung kelapa sebagai 

elektrod superkapasitor dari segi sifat fizikal dan elektrokimia pada taburan saiz zarah 

yang berbeza. Taburan saiz zarah serbuk AC yang telah diayak menggunakan saiz 

mesh 75, 150, 180 dan 300 μm serta diukur menggunakan teknik pembelauan cahaya 

laser. Setiap elektrod AC dihasilkan menggunakan 88%wt serbuk AC, 6%wt karbon 

hitam dan 6%wt polyvinyl difluorida. Elektrod tersebut dilabelkan sebagai 

75AC/+0AC, 75AC/+150AC, 75AC/+180AC dan 75AC/+300AC. Elektrod 75AC/ 

difabrikasi menggunakan serbuk AC berdasarkan kepada 90% serbuk AC dengan saiz 

zarah 75 μm, manakala simbol ‘+’ menunjukkan campuran sebanyak 10% serbuk 

zarah kasar yang terdiri daripada saiz 150, 180 atau 300 μm. Kedua-dua serbuk AC 

dan elektrod telah dicirikan dari segi luas permukaan, saiz pori, isipadu mikropori dan 

morfologi. Luas permukaan dan isipadu mikropori dikira dengan menggunakan model 

Brunauer-Emmett-Teller (BET) dan Barret-Joyner-Helenda (BJH). Sifat elektrokimia 

elektrod AC telah dianalisa menggunakan kitaran voltametri, caj nyahcaj galvanostatik 

dan spektroskopi rintangan elektrokimia. Didapati bahawa sebahagian struktur pori 

AC telah tertutup oleh karbon hitam selepas melalui proses fabrikasi yang mana ia 

mengurangkan luas permukaan dengan banyak. Tambahan campuran zarah kasar telah 

menyebabkan keretakan mikro ke atas permukaan elektrod dalam semua sampel. 

Walau bagaimanapun, ia meningkatkan luas permukaan dan kemuatan tentu elektrod 

yang mana kedua-dua kenaikan meningkatkan ketumpatan tenaga superkapasitor. 

Sebagai satu perbandingan antara 75AC/+0AC dan 75/+150AC, luas permukaan BET 

elektrod, isipadu mikropori BJH dan kemuatan tentu telah meningkat sebanyak 

20.00%, 20.12% dan 22.74%, masing-masing. Sebaliknya, penambahan saiz zarah 

kasar yang besar daripada +150AC telah mempamerkan kelemahan utama ke atas 

penguraian elektrolit. Dapat disimpulkan bahawa prestasi superkapasitor dapat 

diperbaiki dengan lebih lanjut dengan percampuran zarah halus dan kasar berbanding 

dengan komposisi tunggal serbuk halus semata-mata. Walau bagaimanapun, saiz zarah 

kasar tidak sepatutnya terlalu besar kerana ia boleh memberi kesan ke atas sifat 

penguraian elektrolit. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem background 

Back in 1957, supercapacitor had filed its patent and starting gained interest in 

1990 due to the innovation of electrical hybrid technology system. Supercapacitor had 

both high power and energy densities which makes it considered to be combination of 

capacitor and battery. Its potential to charge and discharge faster had even made it to 

be coupled with a battery inside the power plant to provide power back up supply 

during a power disruption. However, the problem with the supercapacitor was its low 

energy compared to conventional battery. Increasing the energy would challenge the 

commercially available battery to be exchanged with the supercapacitor (Wang et al., 

2012).  

Based on Figure 1.1, there were two types of supercapacitor which were double 

layer capacitor (EDLC) (Figure 1.1 (a)) and pseudocapacitor (Figure 1.1 (b)). EDLC 

stored their energy by accumulating the ion on the electrode surface while 

pseudocapacitor used reversible redox reaction to store charge. The mechanism was 

different when compared with Li-ion battery (Figure 1.1 (c)). Battery used reversible 

redox reaction through the intercalation process of Li-ion into the graphite (Jost et al., 

2014). However, both pseudocapacitor and Li-ion battery had low conductivity which 

makes it had slower charging time compared to EDLC type of supercapacitor. Despite 

of EDLC low energy, this can be overcome by using high surface area (1000 m2 g-1) 

carbon material such as activated carbon (AC) (Wang et al., 2012). 



 

2 

 

Figure 1.1  Schematic drawing of (a) EDLC (b) pseudocapacitance type of 

supercapacitors and (d) Li-ion battery (Jost et al., 2014). 

 

Supercapacitor energy can be increased by increasing the capacitance and 

operating voltage. Capacitance was depended on the electrode material properties 

while operating voltage depend on the type of electrolyte. The commercially available 

supercapacitor normally used organic electrolyte due to high operating voltage that 

can reach between 2.5 – 2.8 V. However, it had been reported that organic electrolytes 

needed a special compartment to avoid flammability (Zhong et al., 2015). Therefore, 

previous researchers used aqueous electrolyte since it was cheap, high conductivity 

and easy to handle. Neutral, alkali or acidic type of aqueous solution can be possibly 

used as the supercapacitor electrolyte but among those solutions, sulphuric acid 

(H2SO4) electrolyte was normally chosen since it had the highest conductivity (Zhong 

et al., 2015). Despite of aqueous electrolyte operating voltage was limited to 1.0 V, the 

supercapacitor energy still can be increased through the increased of capacitance. 

Supercapacitor capacitance was depended on the electrode type of material. 

The material can be from a metal oxide, conducting polymer or carbon material. 

Among those material, metal oxide and conducting polymer managed to produce 10-

100 times greater specific capacitance than carbon material. However, it suffered from 

low conductivity, required the electrode to have nanometer thickness and complex 

production procedure. Thus, commercially available supercapacitors used carbon-type 

material due to its long lifetime, high conductivity and easy production compared to 

other types of material. Carbon type material can be in the form of graphite, carbon 

onion, carbon nanotube (CNT) or activated carbon (AC). Since the capacitance was 

inversely proportional to the electrode surface area, to this day AC was normally 
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applied as commercial supercapacitor electrode since it had a surface area of more than 

1000 m2 g-1 (Wang et al., 2012; Ghosh and Lee, 2012). 

AC can be easily made from biomass such as crops, solid waste and animal 

residue. Production of AC just needed the biomass to undergo thermal decomposition 

by carbonizing and activating it at a temperature between 400 – 1000 °C in the absence 

of oxygen. From those thermal decomposition process, biomass developed a porous 

structure which led AC to have surface area for more than 1000 m2 g-1 (Abioye and 

Ani, 2015). Previous researches had successfully made AC using plastic (Kumar et al., 

2018), wood fiber (Jin et al., 2014), oil palm kernel shell (Misnon et al., 2015), corncob 

(Qu et al., 2015; Wang et al., 2015), fabric (Su et al., 2014), sugarcane (Rufford et al., 

2010), ginkgo shell (Jiang et al., 2013), coffee endocarp (Nabais et al., 2011), 

paulownia flower (Chang et al., 2015), lotus root shell (Wang et al., 2016b), rice husk 

(He et al., 2013), firwood (Wu et al., 2004), sawdust (Taer et al., 2011), soybean (Sun 

et al., 2020), cattail (Yu et al., 2017), willow (Jiang et al., 2020) and coconut shell 

(Barzegar et al., 2016; Fahmi et al., 2020; Jain and Tripathi, 2014). But, among of 

those types of material, majority of commercial supercapacitor electrode was based on 

coconut shell AC since it had hierarchical porous structure, high conductivity and well-

ordered microstructure (Jain and Tripathi, 2014).  

AC electrode was produced by binding all AC and conducting agent together 

with binder. Its fabrication process involved mixing all electrode material (AC, 

conducting agent and binder) in solvent, casting on the current collector, drying and 

cutting into a desired electrode shape. However, before fabricating the electrode, AC 

must firstly be milled and sieve to produce fine powder for better electrode mechanical 

stability (Azaıs, 2013). Particle size distribution in the AC powder needed to be 

determined as there had been report that particle size can potentially affecting electrode 

physical and electrochemical properties (Rennie et al., 2016; Fahmi et al., 2020). The 

term physical properties included electrode surface area, pore size, carbon crystal 

dimension and morphology. Finding suitable particle size distribution was needed 

since AC physical properties correlate with supercapacitor electrochemical properties.   
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Electrochemical properties of a supercapacitor can be analysed using cyclic 

voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical 

impedance spectroscopy (EIS). The main function of CV was to know charge 

mechanism at increased voltage rate while GCD was used to test the supercapacitor 

performance by charge discharge until reaching the required voltage (Abioye and Ani, 

2015). In case of EIS, Bode and Nyquist plots were used to measure the supercapacitor 

resistance and capacitance at increased frequency with the application of alternating 

current (a.c) (Ghosh and Lee, 2012). The plots were used to understand ion kinetic 

behaviour inside supercapacitor electrode. According to (Cooper et al., 2017) and 

(Cericola and Spahr, 2016), Nyquist plot pattern can showed the influence of pore 

structure and particle size to supercapacitor resistance. Nevertheless, understanding 

the particle size distribution effect using Nyquist plot was still recent.  

1.2 Problem statement 

Before fabricating the electrode, AC must be in the form of fine powder. Fine 

powder was usually produced by sieving the AC. After that, the sieve mesh size was 

used as AC particle size indicator as stated by Taer et al. (2019), Wu et al. (2004), Wu 

et al. (2005), Abioye et al. (2017) and Farma et al. (2013). Nevertheless,  Pratsinis 

(2010) stated that using mesh size as particle size indicator was not accurate as not all 

particles within the sample had same size with the mesh size. Therefore, stating AC 

particle size in the form of particle size distribution was proper and this can be possibly 

measured using laser diffraction (Rennie et al., 2016). Since this technique had been 

performed by Rennie et al. (2016) and Pandolfo et al. (2010), it can be used at the tool 

to validate whether using sieve mesh size as particle size indicator was suitable or not.  

Based on Azaıs (2013), it was recommended that the electrode was fabricated 

with fine particle that was range between 4 – 8 μm. However, According to Taer et al. 

(2019) and Eguchi et al. (2020), adding small amount of coarse particles can improve 

the ion transportion in electrode. Both researches had managed to fabricate electrode 

with coarse particle at size 53 and 135 μm. Some cases such as Dyatkin et al. (2016) 

had even prove that it was possible to fabricate electrode solely based on coarse 

particle at 250 μm and as a result it managed to produce high capacitance that was 
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comparable to fine particle electrode. This showed that coarse particle can increased 

the supercapacitor capacitance. However, fabricating electrode solely based on coarse 

particle was hard since the electrode can easily brake (Rennie et al., 2016). Further, 

including small portion of coarse particle in electrode that was beyond 135 μm was 

not done yet. By knowing suitable coarse particle size, the cost of electrode production 

can be cut (Dyatkin et al., 2016). 

Studying in term of understanding the effect of particle size to supercapacitor 

performance was considered to be new since this topic was opened starting at year 

1996 by Yoshida et al. (1996) and later revisited by Portet et al. (2008), Jäckel et al. 

(2016), Dyatkin et al. (2016) and Rennie et al. (2016). Knowing the particle size 

distribution in biomass AC accurately was vital as it determined the electrode physical 

properties which eventually affecting supercapacitor performance (Rennie et al., 2016; 

Eguchi et al., 2020). For instance, changing sizes of the original AC by milling can 

shifting the carbon crystal dimension. This eventually affecting the conductivity of AC 

(Li et al., 2007). Cases like Rennie et al. (2016), had found that there was sudden high 

specific capacitance, surface area and pore volume at certain point of particle size 

distribution. Studying on the relationship between particle size to supercapacitor 

performance was still considered to be new. Therefore, widening this topic may open 

up a new concept of understanding supercapacitor performance which was the effect 

of particle size. 

1.3 Research objectives 

The objectives of the research are: 

(a) To evaluate the particle size distribution in sieved coconut shell activated 

carbon powder using laser diffraction particle size analysis. 

(b) To fabricate coconut shell activated carbon supercapacitor electrode at 

different particle size distribution.  



 

6 

(c) To characterize the coconut shell activated carbon and supercapacitor electrode 

in term of physical and electrochemical properties at different particle size 

distribution. 

1.4 Scope of Studies 

Scope of study is consisting of: 

(a) Commercial activated carbon was based on coconut shell. 

(b) The milled activated carbon powder undergone sieving process using 75, 150, 

180 and 300 μm mesh size. 

(c) The sieved activated carbon powder particle size was measured using laser 

diffraction particle size analysis. 

(d) 75, 150, 180 and 300 μm activated carbon powder undergo physical 

characterization which consist of surface area, pore size, x-ray diffraction and 

captured scanning electron microscopy images 

(e) Electrode was fabricated from activated carbon as active material, carbon black 

as conducting agent and polyvinylidene fluoride as binder with N-Methyl-2-

pyrrolidone solution as the solvent.  

(f) The active material was either be in pure fine particle (75 μm) or having small 

portion of coarse AC particle. Active material that included small portion of 

coarse particle contained 90% fine particle and 10% coarse particle (150, 180 

or 300 μm).  

(g) The electrodes undergo physical characterization which consist of surface area, 

pore size and captured scanning electron microscopy images 

(h) The supercapacitor cell was set up using activated carbon as electrode, nickel 

foam as current collector and 1 M H2SO4 as electrolyte. 

(i) Supercapacitor electrochemical analysis consist of cyclic voltammetry, 

galvanostatic charge discharge and electrochemical impedance spectroscopy 
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1.5 Significance of the study 

This study was targeted to understand the effect of particle size on 

supercapacitor performance. This will help in identifying suitable particle size to 

manufacture AC electrode. Before this, it was known that AC electrode needed to built 

from fine particle only. If knowing that it was possible to mixed coarse particle with 

fine particle for AC electrode fabrication, this can cut the cost of production in 

reducing the AC coarse particle into fine powder.
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