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ABSTRACT

Polymer nanocomposites are promising formulations and an inspiring route 
for developing innovative polymeric-based insulating materials. However, the 
agglomeration of nanoparticles within the polymer matrix is the main factor that 
restricts the enhancement of insulation characteristics because the non-uniform 
dispersion of nanoparticles consequently reduces the interfacial area and creates weak 
polymer-nanofiller interfacial bonds. Conventionally, the chemical surface 
functionalization and calcination techniques have been introduced to modify the 
surface of nanoparticles in enhancing the compatibility between the nanoparticles and 
polymer matrix. However, these techniques were unsuitable for implementation 
because they required complex sequential steps. Thus, this research proposed an 
alternative technique of nanoparticle surface modification using atmospheric pressure 
plasma (APP) to improve the surface compatibility of nanoparticles and polymer 
matrix, consequently leading to the enhancement of dielectric properties such as 
partial discharge (PD) resistance and alternating current (AC) breakdown strength. 
This thesis also explores the effect of plasma treatment and its correlation to the 
aforementioned dielectric properties. In this study, the optimum operating parameters 
of APP, such as voltage supply, excitation frequency, and working gas flow rate have 
been characterized to acquire homogeneous and stable plasma discharge, which is 
then used to treat the surface of silicon dioxide (SiO2) nanoparticles in enhancing its 
compatibility with cross-linked polyethylene (XLPE) matrices. The weight 
percentages of untreated and plasma-treated SiO2 nanoparticles dispersed into XLPE 
were manipulated to 1 wt%, 3 wt%, and 5 wt%, as well as the duration of treatment 
that manipulated to 1 minute, 3 minutes, and 5 minutes to identify the most effective 
formulation of XLPE/SiO2 nanocomposites. As aforementioned, the optimum 
operating parameters for producing homogeneous and stable plasma discharge were 
0.5 kV, 20 kHz, and 0.8 L/min, respectively. In comparison with unfilled XLPE, the 
most effective formulation of XLPE nanocomposites was shown by the sample with
3 wt% of 5-minute plasma-treated SiO2 nanoparticles with the highest PD resistance 
with the reduction of PD magnitude up to 2000 pC, the reduction of PD number up to 
220512, and the reduction of surface roughness due to PD attacked up to 1.04 p,m. 
Meanwhile, the same formulation of XLPE nanocomposites also indicated the most 
significant enhancement of AC breakdown strength up to 26.29 kV/mm compared to 
unfilled XLPE. Plasma has been found to be an alternative technique to improve the 
PD resistance and AC breakdown strength of XLPE nanocomposites by exciting the 
formation of the more substantial interfacial regions through the formation of 
interfacial bonds and the reduction of the size and number of agglomerated clusters. 
It is inferred that the plasma treatment method is appropriate for producing 
nanocomposites with improved surface compatibility and enhancing polymer 
nanocomposites' dielectric properties for high voltage insulation material applications.
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ABSTRAK

Nanokomposit polimer adalah rumusan yang mengalakkan dan laluan inspirasi 
untuk membangunkan bahan penebat berasaskan polimer yang inovatif. Walau 
bagaimanapun, aglomerasi nanozarah dalam matriks polimer adalah faktor utama 
yang menyekat peningkatan ciri penebat kerana penyebaran nanozarah yang tidak 
seragam mengakibatkan pengurangan kawasan antara muka dan mewujudkan ikatan 
antara muka polimer-nanozarah yang lemah. Secara konvensional, teknik rawatan 
kimia dan teknik pengkalsinan telah diperkenalkan untuk mengubah suai permukaan 
nanozarah dalam meningkatkan keserasian antara nanozarah dan matriks polimer. 
Walau bagaimanapun, teknik ini tidak sesuai untuk pelaksanaan kerana memerlukan 
langkah berurutan yang kompleks. Oleh itu, penyelidikan ini mencadangkan teknik 
alternatif pengubahsuaian permukaan nanozarah menggunakan plasma tekanan 
atmosfera (APP) untuk meningkatkan keserasian permukaan nanozarah dan matriks 
polimer, seterusnya membawa kepada peningkatan sifat dielektrik seperti rintangan 
nyahcas separa (PD) dan kekuatan pecahan arus ulang alik (AC). Tesis ini juga 
memperincikan kesan rawatan plasma dan kaitannya dengan sifat dielektrik yang 
disebutkan di atas. Dalam kajian ini, parameter operasi optimum APP seperti voltan 
bekalan, kekerapan pengujaan, dan kadar aliran gas kerja telah dicirikan untuk 
memperoleh pelepasan plasma yang homogen dan stabil, yang kemudiannya 
digunakan untuk merawat permukaan nanozarah silikon dioksida (SiO2) dalam 
mempertingkatkan keserasiannya dengan matriks polietilena berkait silang (XLPE). 
Peratusan berat nanopartikel SiO2 yang tidak dirawat dan dirawat plasma yang 
disebarkan ke dalam XLPE telah dimanipulasi kepada 1 wt%, 3 wt%, dan 5 wt%, serta 
tempoh rawatan yang juga dimanipulasi kepada 1 minit, 3 minit, dan 5 minit untuk 
mengenal pasti formulasi nanokomposit XLPE/SiO2 yang paling berkesan. Parameter 
operasi optimum untuk menghasilkan plasma dengan nyahcas yang homogen dan 
stabil seperti yang dinyatakan di atas masing-masing adalah 0.5 kV, 20 kHz, dan 0.8 
L/min. Berbanding dengan XLPE yang tidak diisi, formulasi nanokomposit XLPE 
yang paling berkesan ditunjukkan oleh sampel dengan 3 wt% daripada nanozarah SiO2 

yang dirawat plasma selama 5 minit dengan rintangan PD tertinggi dengan 
pengurangan magnitud PD sehingga 2000 pC, pengurangan bilangan PD sehingga 
220512, dan pengurangan kekasaran permukaan akibat serangan PD sehingga 1.04 
p,m. Sementara itu, formulasi nanokomposit XLPE yang sama juga menunjukkan 
peningkatan kekuatan pecahan AC yang paling ketara sehingga 26.29 kV/mm 
berbanding XLPE yang tidak diisi. Plasma telah didapati sebagai teknik alternatif 
untuk meningkatkan rintangan PD dan kekuatan pecahan AC nanokomposit XLPE 
dengan mengujakan pembentukan kawasan antara muka yang lebih besar melalui 
pembentukan ikatan antara muka dan pengurangan saiz dan bilangan gugusan 
beraglomerasi. Dapat disimpulkan bahawa kaedah rawatan plasma adalah sesuai 
digunakan dalam pengeluaran nanokomposit untuk meningkatkan keserasian 
permukaan nanozarah dan perumah polimer, sekaligus meningkatkan sifat dielektrik 
nanokomposit polimer sebagai bahan penebat untuk aplikasi voltan tinggi.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

In the 1940s, organic insulating mediums based on polymeric materials were 

introduced intensively, especially in high and medium voltage applications due to the 

superior characteristics of polymers, such as outstanding mechanical, thermal, and 

electrical properties [1]. The maturity in the research trend of polymer-based electrical 

insulation has prompted the scientific exploration focusing on polymer 

nanocomposites for the last two decades. Polymer nanocomposite is a composition 

formed by dispersing nanometer-sized particles into a polymer matrix [2]. Polymer 

nanocomposites are encouraging formulations and an inspiring route for developing 

innovative polymeric-based insulating materials. Recently, multiple studies of 

polymer nanocomposites have been executed vigorously to obtain a high-quality 

insulating medium with superior performance. Insulation failure in an electrical system 

is the main factor that leads to power supply interruption. Thus, designing effective 

insulating materials is required to maximize insulation properties, subsequently 

minimizing power supply interruption. The series of polymer nanocomposites research 

revealed that incorporating nano-meter-sized fillers into the polymer matrix is a 

practical approach to improving the polymer’s insulating properties.

In 1973, Nielsen et al. [3] revealed that dispersing the nanoparticles into the 

polymer matrix has improved the thermal conductivity of the polymer. However, the 

studies on polymer nanocomposites have only been carried out intensively in the past 

20 years to improve the performance of polymer insulating materials. A particular 

focus lies in insulation characteristics such as prolonging the electrical treeing, partial 

discharge resistance, dielectric field strength, dielectric constant, dielectric losses, 

space charge, etc. Based on the collective study of polymer nanocomposites, the 

insulation properties can be improved significantly even by incorporating a small

1



number of nanoparticles into the polymer matrix. The trend study of polymer 

nanocomposites was initiated by manipulating the materials used as nanofillers and 

polymer hosts. In 2004, Nelson et al. [4] studied partial discharge characteristics on 

epoxy resin nanocomposites filled with titanium dioxide, followed by numerous 

researchers that manipulated the type of nanofiller, polymer host, and the processing 

techniques used to prepare the composition. Most researchers have come to the same 

inference that polymer nanocomposites has better insulation properties than pure 

polymer.

Several types of base polymer are typically used in high and medium-voltage 

applications, such as silicon rubber, epoxy resin, low-density polyethylene, high- 

density polyethylene, and cross-linked polyethylene. Nowadays, cross-linked 

polyethylene has been used predominantly as the insulating material for the 

underground cable in the power delivery system [5]. It has been a selective material 

by cable manufacturers due to its outstanding characteristics, such as permitting high 

conductor operating temperature, reducing short circuits, and high dielectric field 

strength [6 ]. However, the insulating properties of XLPE can be further enhanced by 

introducing nanoparticles into the matrix. Among the insulating properties promoted 

to be improved are partial discharge and dielectric field strength [7]. Partial discharge 

is a pre-breakdown phenomenon that indicates the electrical discharge that partially 

bridges the dielectric medium between two conduction parts. Meanwhile, the dielectric 

breakdown strength represents the maximum electric field stress that the insulator can 

withstand. In some studies, the collective review showed that XLPE nanocomposites 

have better insulation properties, as pointed out by Tanaka et al. [8 ], where the partial 

discharge resistance and dielectric field strength of XLPE nanocomposites filled with 

silicon dioxide showed significant improvement over pure XLPE.

Conventionally, the preparation of XLPE nanocomposites typically utilizes the 

direct mixing technique without concerning the effective dispersion of nanoparticles 

within the polymer matrix. The study trend involves XLPE nanocomposites has been 

conducted aggressively in the last few years by manipulating the types of 

nanoparticles, processing technique, and electrical test measurement. Widely, oxide- 

based nanoparticles have drawn the attention of researchers to be added to the XLPE
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matrix due to their prominent role in enhancing the insulation properties of XLPE. 

Among the oxide-based nanoparticles, silicon dioxide is a selective compound to be 

dispersed into polymer matrix due to its comprehensive characteristics such as 

outstanding hardness, solid and stable molecular structure with a gigantic covalent 

bond [9]. Besides, silicon dioxide also has a great potential to be utilized as 

nanoparticles in producing large-scale polymer nanocomposites since it is commonly 

found in nature as quartz and the cell walls of diatoms [10]. Therefore, this study is 

focused on the insulation characteristics such as partial discharge resistance and 

dielectric field strength of the composition based on XLPE and SiO2 as a base polymer 

and nanofiller, respectively.

Incorporating nanometer-sized silicon dioxide into the polymer base material 

prominently improved the partial discharge resistance and dielectric field strength by 

increasing the contact surface area of the composition [1 1 ], which possibly creates a 

sort of hindrance to the accumulation of space charge due to the elimination of the 

local electric field distortion [12]. In obtaining effective polymer nanocomposites, the 

finding factors are directed to the several characteristics of the composition, such as 

huge interaction zone, proximity, and ample spaces for the trapping of charge carriers, 

in realizing the mechanism of nanoparticles to inhibit PD activities by preventing and 

reducing the drift and movement of charge carriers, respectively [13]. However, some 

of the studies claimed that the ineffective dispersion of nanoparticles into the XLPE 

matrix had been the crucial issue that limits the insulation performances of XLPE 

nanocomposites [14]. Therefore, the study on the surface interaction of polymer 

nanocomposites has been executed to determine the factors which affect the polymer- 

nanofiller interfacing region.

Through the rigid findings, the agglomeration of nanoparticles within the 

polymer matrix is the main factor that restricts the enhancement of insulation 

characteristics because the non-uniform dispersion of nanoparticles consequently 

reduces the interfacial area and creates weak polymer-nanofiller interfacial bonds [15]. 

The previous studies revealed that different chemical characteristics between 

nanofiller and base polymer also being the factor that causes the formation of the poor 

polymer-nanofiller interfacial region. For instance, a base polymer is generally an
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organic compound, whereas a nanofiller like silica is inorganic. Previous studies 

reported that uniform dispersion of nanoparticles within a polymer matrix could be 

achieved by treating the surface of nanoparticles for the composition of organic- 

inorganic polymer nanocomposites [16].

Conventionally, several methods have been introduced to modify the surface 

of nanoparticles in enhancing the compatibility between the nanoparticles and the 

matrix of the base polymer. These approaches are typically known as the surface 

modification or surface treatment of nanoparticles. The most favourable technique 

among the researchers is the chemical surface functionalization method. This method 

is preferred because the outcomes are impressive and promise the excellent potential 

to functionalize a specific chemical functional group on the surface of nanoparticles 

such as carbonyl, carboxyl, amines, hydroxyl, hydroperoxyl, and peroxide functional 

groups.

The effectiveness of the chemical surface functionalization method also seems 

able to improve the uniformity dispersion of nanoparticles within the polymer matrix, 

resulting in overcoming the agglomeration issue. However, there have certain 

limitations regarding this method. This method uses chemical agents and/or solvents 

such as dimethylacetamide and propyltrimethoxysilane for coupling, swelling, and 

exfoliating purposes. Therefore, this method is unsuitable in terms of eco- 

environmentally [17]. In addition, the process of chemical surface functionalization is 

also complex and challenging to implement since this method also involves a few other 

processes, such as exfoliating, swelling, and doping [18]. Thus, due to the complexity, 

the chemical surface functionalization method is unsuitable to be chosen as a surface 

modification technique for the nanoparticles.

Furthermore, heat treatment, also known as the calcination technique, is 

another method used to treat the surface of nanoparticles. However, the effectiveness 

of this method in overcoming the agglomeration issue is still being explored among 

researchers. Thus, this technique seems unsatisfactory in enhancing the insulation 

characteristics of polymer nanocomposites, such as partial discharge resistance, 

dielectric field strength, and dielectric constant. In addition, this method is also

4



difficult to be applied because complex and controllable systems are required to 

control the amount of heat exposure to the surface of nanoparticles.

As mentioned, the performance of XLPE nanocomposites still does not achieve 

a satisfactory level due to the factor of the incompatible surface structure of 

nanoparticles and XLPE matrix, which led the nanoparticles to agglomerate, resulting 

in restricting the enhancement of insulation characteristics [14], [15], [19]. Besides, 

the conventional techniques used to improve the surface compatibility of nanoparticles 

and polymer matrix, such as chemical surface functionalization and heat treatment, 

appear to be less effective with various drawbacks.

Thus, plasma treatment is an alternative method introduced to provide a 

modification mechanism on the surface of nanoparticles, promising an improvement 

in the dispersion of nanoparticles within the polymer matrix [17]. Hence, the insulation 

characteristics of XLPE nanocomposites, such as partial discharge resistance and 

dielectric field strength, are expected to be enhanced by incorporating plasma-treated 

nanosilica into the XLPE matrix. Since this method is still being explored at an early 

stage, the effectiveness of this method and the specific design of plasma treatment 

systems in treating nanoparticles have not been formally reported in the previous 

study. In 1993, Friedrich et al. [20] pointed out that plasma treatment is an effective 

method to maximize the adhesion of chemical bonds on the surface of polymer 

substrates. However, no additives or fillers were included in the study. Hence, no 

significant justification was made regarding the polymer incorporated with plasma- 

treated fillers.

In the next few years, Shi et al. [21] experimented that coating nanoalumina’s 

surfaces with ultra-thin pyrrole films using the plasma polymerization technique. The 

study found that coating the surface of nanoalumina using plasma polymerization 

technique could effectively produce energetic stable polymorph. However, the study 

did not include the insulation characteristics of the polymer nanocomposites. In 2013, 

Yan et al. [22] conducted intensive research on polymer nanocomposites modification 

using plasma polymerization. The study revealed that plasma polymerization is a 

promising technique for enhancing the insulation characteristics of the polymer
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nanocomposites, such as partial discharge resistance and dielectric field strength. The 

plasma polymerization method has been introduced for the same purpose as other 

surface modification techniques: to improve the compatibility between polymer- 

nanofiller interfaces by coating the thermoplastic material on nanofiller surfaces.

Plasma polymerization is the preferable technique to replace the chemical 

surface functionalization method in overcoming the agglomeration issue because the 

surface modification mechanism becomes more effective with the ionization process 

provided by the plasma discharge. The main idea of how this technique works is that 

the coating agent was coated on nanofiller surfaces using plasma discharge. The 

plasma discharge will ionize the background gas molecules and produce a 

bombardment of electrons, forming electronegative charges on the nanofiller surfaces. 

This will excite and form new covalent bonds between the nanofillers and coating 

agents, strengthening the molecular structure between nanofiller-coating agents [2 2 ]. 

The coated nanofillers could have better surface compatibility with the base polymer 

because they have almost similar surface functional groups that match and self

encouragement merged.

However, the plasma polymerization technique also has several drawbacks that 

deny the applicable potential. Even though this technique could obtain high 

effectiveness of polymer nanocomposites with the excellent agreement of insulation 

properties, the chemical agent is still required to be used in the process of 

polymerization. For instance, Liu et al. [23] used a chemical solution to synthesize the 

coated nanofillers into the polymer matrix. Besides, some of the coating agents 

themselves are harmful solvents, which may cause the coated nanofillers to become 

toxic. In addition, plasma polymerization is a complex technique because it 

simultaneously requires complicated plasma and chemical system handling. 

Furthermore, the by-product produced through plasma polymerization is also thought 

to contain poison and is excessively activated in unforeseen circumstances.

Two classes of plasma have been employed in the previous study to modify the 

surface morphology of nanofillers operated under low-pressure and atmospheric 

pressure conditions. Low-pressure plasma is a good discharge process in treating the
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surface of nanofillers with the high capability to prevent the nanofillers from being 

contaminated with undesired molecules. However, the treatment chamber of low- 

pressure plasma is complex due to its operating condition typically being lower than 

atmospheric pressure. Thus, the low-pressure plasma treatment must be operated 

inside a closed vacuum system. The complexity and difficulty of controlling the 

vacuum system were the reasons why low-pressure plasma is not preferred in this 

study. In addition, low-pressure plasma is also inapplicable to be implemented at the 

industrial level because it requires a high cost for the vacuum and controlling system 

[24].

Previous researchers also intensively used atmospheric pressure plasma 

because it is easier to develop and operate under atmospheric pressure at ambient 

temperature. Since APP operates under an atmospheric pressure condition, thus 

vacuum system is not required for this category of plasma treatment. Therefore, an 

effective APP treatment system will be designed, developed, and characterized in this 

research by concerning optimum input parameters such as voltage supply, operating 

frequency, and flow rate of discharge gas. Besides, the effectiveness of APP treatment 

in improving the insulation characteristics of XLPE nanocomposites is also required 

to be observed and justified in terms of partial discharge resistance and dielectric field 

strength. In addition, the optimum configuration of weight percentage and duration of 

plasma treatment of the nanosilica also be identified in this study. The material 

characterization is also included in this study to distinguish the physical and chemical 

structure of plasma-treated nanosilica and XLPE nanocomposites which is related to 

the enhancement of partial discharge resistance and dielectric field strength.

1.2 Problem Statements

In specific, insulation characteristics can be further enhanced by resolving the 

agglomeration issue to acquire a compatible surface structure between the nanofiller 

and base polymer using the surface modification technique. Conventionally, the 

surface modification technique used is the chemical surface functionalization method 

and heat treatment. However, these methods are not suggested to be implemented,
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especially at the manufacturing level, due to their complexity. Therefore, plasma 

treatment is an effective technique over the conventional methods with a 

straightforward surface modification process on the nanoparticles in resolving the 

agglomeration issue by enhancing the compatibility between the nanoparticles and 

base polymer [11], [17], [25]-[32]. In the last few years, Yan et al. [25]-[27], Musa et 

al. [17], [28], and Awang et al. [11] have utilized atmospheric pressure plasma 

treatment techniques to modify the surface of silicon dioxide nanofiller in achieving 

uniform dispersion of the nanofiller within the matrix of epoxy resin, silicon rubber, 

and low-density polyethylene, respectively. However, their studies are limited to 

characterizing certain insulation parameters on the specific polymer base materials 

filled with silicon dioxide nanoparticles. Besides, these studies are only limited to 

plasma treatments with the filamentary mechanism of the non-uniform discharge 

process. Moreover, these studies also do not focus on developing a specific APP 

treatment system. According to the literature review, no investigation formally 

reported the characteristics of partial discharge and dielectric field strength of the 

XLPE nanocomposites added with silicon dioxide nanoparticle that has been modified 

using the glow mechanism of APP treatment. Therefore, the collective limitations in 

their studies have become the gap that will be gratified in this study by conducting the 

effectiveness of glow mechanism plasma treatment with a uniform discharge process 

in enhancing the partial discharge resistance and dielectric field strength of XLPE 

nanocomposites. Supplementary, this study also includes developing an APP treatment 

system with a glow discharge mechanism to be explicitly used in modifying the surface 

of nanoparticles by considering the input parameters in plasma production.

1.3 Research Objectives

The objectives of this research are drawn as listed:

(a) To characterize the optimum input parameters in producing atmospheric 

pressure plasma discharge to modify the surface of silicon dioxide 

nanoparticles.
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(b) To characterize the morphology of the nanoparticles affected by plasma 

treatment.

(c) To analyze the effective formulation of XLPE nanocomposites in improving 

partial discharge resistance and dielectric field strength characteristics by 

distinguishing the composition added with untreated and plasma-treated silicon 

dioxide nanoparticles.

1.4 Research Scopes

This research has been conducted according to the following scope:

(a) The development of an atmospheric pressure plasma treatment system aims to 

produce glow plasma with a uniform discharge mechanism. The mechanism of 

plasma discharge highly relies on the input parameters such as supply voltage, 

operating frequency, and flow rate of discharge gas which are comprehensively 

considered in this study. Thus, this study was focused on optimizing the input 

parameters to produce homogenous plasma discharge by characterizing the 

discharge mechanism according to discharge current waveform and Lissajous 

figure analysis.

(b) The uniform discharge of APP treatment was conducted on the surface of 

silicon dioxide nanoparticles under the different treatment durations of 1, 3, 

and 5 minutes. The treatment time was varied to determine the effect of 

treatment duration on the insulation characteristics of XLPE nanocomposites. 

The chemical analyses on the morphology of the untreated and plasma-treated 

silicon dioxide nanoparticles using x-ray photoelectron spectroscopy (XPS), 

Fourier transforms infrared (FTIR) spectroscopy, and field emission scanning 

electron microscopy (FESEM) were included in this study.

(c) The formulation of polymer nanocomposites is focused on the XLPE as the 

material of the polymer host with the addition of 1 wt%, 3 wt%, and 5 wt% of 

fillers which are the untreated and plasma-treated silicon dioxide nanoparticles.
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(d) The experimental investigations were carried out to identify the effective 

formulation of XLPE nanocomposites according to the characteristics of partial 

discharge resistance and dielectric field strength measurements. Concurrently, 

the effectiveness of APP treatment in enhancing these insulation characteristics 

of the XLPE nanocomposites is also involved in this study.

(e) The composition of XLPE with the untreated and plasma-treated silicon 

dioxide nanoparticles was characterized by using FTIR and FESEM to analyze 

the chemical composition and uniformity of the filler dispersion within the 

XLPE matrix, respectively.

1.5 Research Limitation

The following were limitations of this study:

(a) In this study, the weight percentage of fillers was only limited to 1 wt%, 3wt%, 

and 5wt% of silicon dioxide nanoparticles. According to the literature, the 

insulation characteristics of polymer nanocomposites typically have the 

potential to be enhanced at these amounts of nanofillers [8 ], [33].

(b) This exploration only focussed on a single type of nanoparticle, silicon dioxide, 

due to its outstanding properties such as high electrical resistance and strong 

molecular bond. Besides, this nanoparticle is also frequently reported in 

previous research as a comprehensive type of filler to enhance the insulation 

characteristics of the polymer.

(c) The development of an APP treatment system with a glow discharge 

mechanism is only limited to the effects of input parameters to acquire uniform 

plasma discharge in treating the surface of nanoparticles.

(d) Besides, this study is only limited to identifying APP treatment’s effectiveness 

in enhancing the insulation characteristics of XLPE nanocomposites according 

to the partial discharge resistance and dielectric field strength.
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1.6 Research Contribution

The contributions of this research are as listed:

(a) Atmospheric pressure plasma treatment with a uniform discharge has drawn an 

encouraging improvement in the insulation characteristics of XLPE 

nanocomposites. This has been achieved by overcoming the agglomeration of 

silicon dioxide nanoparticles within the XLPE matrix. Homogenous dispersion 

of silicon dioxide nanoparticles within the XLPE matrix has been acquired by 

functionalizing the hydroxyl, hydroperoxyl, and peroxide functional groups on 

the surface of nanoparticles using the APP treatment technique. For the first 

time, this research work offers improvement of insulation characteristics of 

XLPE nanocomposite such as partial discharge resistance and dielectric field 

strength by enhancing the compatibility between the silicon dioxide 

nanoparticles and the XLPE matrix using APP treatment technique with glow 

discharge mechanism.

(b) The investigation of effective XLPE nanocomposites formulation based on the 

weight percentage and plasma treatment time of silicon dioxide nanoparticles 

also made this research work significant and highly impacted in terms of 

finding and information. In particular, the evaluation of effective XLPE 

nanocomposites formulation is made according to the insulation characteristics 

mentioned.

(c) This study found that the addition of plasma-treated silicon dioxide 

nanoparticles into the XLPE matrix has increased the partial discharge 

resistance and dielectric field strength. The enhancement of insulation 

characteristics of XLPE nanocomposites based on the uniform APP treatment 

on the surface of silicon dioxide nanoparticles indicates the contribution of this 

study due to the limited publication has been reported, such as the study 

mentioned. Thus, this configuration of exploration is the main research 

contribution.
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(d) Besides, the optimization of input parameters in producing glow-based surface 

modification through APP treatment has also been explored. This study found 

that homogeneous plasma discharge consists of a single pulse discharge current 

in each cycle of supply voltage with a constant value of discharge capacitance.

(e) In addition, the improvement of insulation characteristics achieved in this study 

by using homogeneous plasma discharge treatment is also in line with the 

nanomaterial evolution as a comprehensive initiative in designing a new 

insulating material, thereby can be utilized in high voltage equipment with a 

longer lifetime at once has potential to reduce the maintenance costs.

1.7 Thesis Outline

The thesis is organized as follows:

Chapter 2 consists of a review of the chemical and physical structure of 

polymer nanocomposites. Besides, the surface modification of nanofillers, partial 

discharge phenomenon, and dielectric field strength of polymer nanocomposites with 

its classification and influencing factors are also described in this chapter. In particular, 

the characteristics of partial discharge resistance and dielectric field strength of 

polymer nanocomposites from the previous studies were also reviewed accordingly. 

This chapter also includes a review of the limitations of conventional surface 

modification methods in enhancing the insulation characteristics of polymer 

nanocomposites. Besides, this review also focused on the previous studies on surface 

modification using the atmospheric pressure plasma technique.

Chapter 3 presents the research methodology that explains the experimental 

setup, procedures, and methods of data collection executed in this study. The 

experimental setup of atmospheric pressure plasma treatment on the silicon dioxide 

nanoparticles has been described. The descriptions of the samples to be tested and the 

types of tests conducted have also been presented. It details the measurement 

procedure of the partial discharge and dielectric field strength measurement. In

12



addition, the procedure of morphological analysis of each sample is also elaborated in 

this chapter.

Chapter 4 discusses and analyses the characteristics of a plasma discharge to 

optimize the input parameters in producing a homogeneous plasma discharge 

according to the discharge current and Lissajous figure analysis. The characteristics of 

atmospheric pressure plasma used to modify nanoparticles’ surfaces, such as the 

discharge capacitance, discharge power, and discharge efficiency, are also elaborated 

in this chapter. Furthermore, morphological analyses of the untreated and plasma- 

treated silicon dioxide nanoparticles based on the results from XPS, FTIR, and FESEM 

have been discussed thoroughly. This chapter also explains the insulation 

characteristics of XLPE nanocomposites incorporated with the untreated and plasma- 

treated silicon dioxide nanoparticles in terms of partial discharge resistance and 

dielectric field strength. Moreover, the morphological analysis by using FTIR and 

FESEM on the samples of XLPE nanocomposites has also been discussed thoroughly 

in this chapter. The mechanism of surface modification on the nanoparticles using APP 

treatment to enhance the insulation characteristics of XLPE nanocomposites is also 

described accordingly.

Chapter 5 concludes and summarizes the findings acquired in this study. This 

chapter provides some recommendations related to this work. This chapter also 

provides suggestions for future studies related to this region.
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