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ABSTRACT 

Muffler is a device to attenuate noise generated in the exhaust gas. Based on 

the current noise regulation, automotive manufacturer was forced to improve the 

muffler performances. Parametric approached was used to improve the existing 

muffler performances rather than designing a new muffler. The research aim was to 

investigate the effect of main muffler internal geometry towards STL and PD across 

the muffler. A comprehensive parametric study was conducted to analyse the effect of 

muffler internal geometry towards its performance. Two mufflers were selected in this 

research work; one simple expansion chamber and the other was a complex muffler 

1.6 litre natural aspirated engine. Both mufflers performances were measured 

experimentally using impedance tube and SuperFlow bench machine. The simple 

expansion chamber was used to validate the proposed concept of 1D model generated 

by Ricardo WAVE meanwhile, the complex muffler was used for comprehensive 

parametric studies to investigate the effect of internal muffler geometry towards STL 

and PD using the 1D model. Four parameters were examined, namely main shell 

volume, pipe diameter, perforated baffle and perforated pipe. The effect of internal 

geometry was analysed from the parametric studies. When the muffler volume was 

increased, the average STL was increased and the PD was reduced, respectively. When 

the diameter of the pipe was increased, the average STL and PD were dropped. The 

perforated on baffle showed less effect on average STL where it can increase by a 

maximum of 1 dB. However, the PD showed a reduction trends as the perforated on 

baffle was increased. The perforated on pipe shows major effect at 600 Hz only and 

PD reduced as the perforated on pipe was increased. From the parametric studies, the 

STL was mostly affected by the muffler main volume while PD was affected by the 

pipe diameter. In order to minimise the PD, the perforated was introduced to the 

muffler design. Adding a resonator and increasing the baffle spacing help to improve 

the muffler performances. As a result, the complex muffler was successfully optimised 

with an increase in average STL by 3.59% and maintained the PD.  
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ABSTRAK 

  

Peredam bunyi (PB) adalah sebuah peranti bagi mengurangkan bunyi yang 

terhasil dari pelepasan gas ekzos. Berdasarkan kepada peraturan bunyi semasa, 

pengeluar automotif telah di sarankan untuk menambahbaik prestasi PB. 

Pendekatan parametrik telah digunakan untuk menambahbaik prestasi PB sedia ada 

berbanding dengan mereka bentuk PB yang baharu. Tujuan penyelidikan ini adalah 

untuk mengkaji kesan dalaman geometri utama PB terhadap kehilangan 

penghantaran bunyi (KPB) dan susutan tekanan (ST) PB. Kajian parametrik yang 

komprehensif telah dilakukan dalam menganalisis kesan geometri dalaman PB 

terhadap prestasinya. Dua buah PB telah dipilih di dalam kajian penyelidikan ini; 

satu kebuk pengembangan mudah (KPM) manakala satu lagi adalah peredam bunyi 

kompleks (PBK) 1.6 liter enjin sedutan semulajadi. Prestasi kedua-dua PB ini di 

ukur secara uji kaji menggunakan tiub galangan dan mesin meja SuperAliran. KPM 

telah digunakan untuk mengsahihkan konsep model 1D yang dihasilkan oleh 

Ricardo Wave manakala PBK digunakan untuk kajian kesuluruhan parametrik bagi 

mengkaji kesan geometri dalaman PBK terhadap KPB dan PD menggunakan model 

1D. Empat parameter telah dikaji iaitu isipadu kelompang utama, garis pusat paip, 

sesekat tertebuk dan paip tertebuk. Kesan geometri dalaman telah dianalisis dari 

kajian parametrik. Bila isipadu PB meningkat, purata KPB meningkat dan ST 

berkurang. Bila garis rentas paip meningkat, purata KPB dan ST menurun. Prestasi 

sesekat tertebuk menunjukkan kesan yang kurang terhadap purata KPB dengan 

peningkatan maksimum sebanyak 1 dB sahaja. Walaubagaimanapun, ST 

menunjukkan tren penurunan apabila tertebuk pada sesekat meningkat. Paip 

tertebuk menunjukkan kesan yang besar pada 600 Hz sahaja, dan ST berkurang 

apabila tertebuk pada paip meningkat. Dari kajian parametrik, KPB banyak 

dipengaruhi oleh isipadu utama PB manakala ST pula dipengaruhi oleh garis pusat 

paip. Untuk meminimumkan ST, tebukan telah diperkenalkan kepada reka bentuk 

PB. Dengan menambah penyalun dan meningkatkan jarak sesekat, dapat membantu 

memperbaiki prestasi PB. Hasilnya, PBK telah berjaya dioptimumkan dengan 

peningkatan purata KPB sebanyak 3.59% dengan mengekalkan ST. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

The muffler is a device used to attenuate noise generated from the engine. The 

noise generated from the engine is transmitted through the exhaust gas. Along the 

exhaust gas path, the gas will meet up the muffler. As a result, the noise energy carry 

in the gases is attenuated. 

Muffler divided into two types which are the reactive muffler and dissipative 

muffler. The reactive muffler mechanism operates by using the wave cancelation 

between the incident wave and the reflected wave. Thus, the positive wave and 

negative wave hit opposite and create noise cancelation effect. The dissipative muffler 

mechanism is based on the absorptive principle. The softer the material, more sound 

are absorbed and attenuate. 

To create noise cancelation, the internal geometry of the muffler plays a big 

role. The internal geometry of the muffler consists of the volume of the chamber, shape 

of the chamber, inlet and outlet diameter, porosity of the perforated type, baffle spacing 

and baffle number. 

A muffler with a various internal geometry also knows as complex muffler. 

Complex muffler defined as the muffler with a various geometry inside the muffler 

such as baffle plate, extended pipe, bend pipe, perforated pipe, perforated pipe, unique 

perforated arrangement and come with resonator. 

The muffler performance commonly measured based on two parameter which 

are sound transmission loss (STL) and pressure drop (PD). To determine the muffler 
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performances, all the parameter can be determined theoretically, experimentally and 

computer simulation. 

1.2 Problem Statement 

Muffler is a device to attenuate noise generated in exhaust stream. With the 

current enhanced and stringent noise regulation by the country like Japan and 

organization such as European Union have forced the automotive manufacturer to 

improve the muffler noise absorption. While having a better muffler noise absorption, 

the pressure drop of the muffler must be maintained because the engine performances 

cannot be compromised. Furthermore, the noise generated from the exhaust can 

provide a low ride comfort and lead stress to the driver especially the low frequency 

noise. Despite of having a newly design muffler, improving the existing muffler model 

by modified the internal muffler geometry can produce a good muffler sound 

absorption and maintain the pressure drop. Identifying a specific parameter through 

parametric study on the internal geometry study with major effect towards sound 

absorption and pressure drop can help the automotive manufacture to improve the 

existing muffler design. Moreover, the current technique used by some of automotive 

manufacturer are try and error method to get the results. 

Parametric studies can be conducted through a simulation process that save a 

lot of money and time. One of the important approaches is 1D modelling and 3D 

modelling. Instead of using a 3D modelling tools that is time consuming, 1D modelling 

are more convenient with less time taken and with acceptable accuracy. Hence, this 

study focuses to identify the muffler internal geometry effect through parametric study 

and with the finding from the parametric studies, the result was used a guideline to 

improve the muffler performances by using a 1D simulations. One complex muffler 

for current commercial muffler had been selected for this study. This muffler was 

chosen because of the internal geometry less complexity compare to another 

commercial muffler that are more complex than the selected muffler.  
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1.3 Research Objectives 

The objectives of the research are: 

i. To determine the current exhaust muffler sound transmission loss and 

pressure drop using 1D simulation and experiment. 

ii. To analyse the effect of exhaust muffler internal geometries toward the 

sound transmission loss and pressure drop. 

iii. To optimise the current exhaust muffler model by increasing sound 

transmission loss at least 3% and maintain the pressure drop. 

1.4 Research Significant 

The research will be conducted based on the problem statement described in 

Section 1.2. The new proposed muffler design will have a better sound transmission 

loss (sound absorption) and maintain the pressure drop. The findings from this research 

work can become references for the vehicle manufacturer to improve their muffler 

performances with the existing muffler design. The method used in this research will 

be discussed briefly and comprehensive parametric studies were conducted. Finding 

from the parametric studies were used as guideline to improve the existing muffler 

design. Understand effect of internal arrangement is a critical aspect that will lead to a 

better acoustic design. Combination of different internal configurations can provide 

benefits to automotive manufacturer. 

Parametric studies will run using a 1D simulations tools. The 1D tools were 

choose because it saves time with acceptable accuracy. Furthermore, the engine 

simulation also was done in 1D simulation. By doing this, it can help the automotive 

manufacturer to improve their existing muffler design with a minimal cost and save a 

lot of time. Furthermore, this study filled the gap between the 1D and 3D analysis of 

sound transmission loss and pressure drop. 
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1.5 Research Scope 

i. Two specimens used, simple expansion chamber and complex muffler. 

ii. The simple expansion chamber was design to be use as 1D model 

validation before proceeded with complex muffler. 

iii. The muffler model used for parametric studies was a complex muffler 

1.6 Liter natural aspirated (NA) engine. 

iv. Validation of simple expansion chamber and complex muffler 

performances between 1D simulation and experiment at frequency 

below 1000 Hz. 

v. The research focused on the main exhaust muffler and four parameters 

of internal geometry; volume, pipe diameter, perforated baffle and 

perforated pipe. 

vi. The studied performances consist of sound transmission loss (STL) and 

pressure drop (PD) 
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