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Abstract: Burger’s equations have been used, time and again to model successfully many physical
phenomena such as in shock waves, acoustic transmision, traffic flow, supersonic flow about aerofoils
and wave propagations in thermoelastic medium. Via Cole-Hopf transformation, the equations are .
reduced to standard diffusion equations. With the advent of modern computer technology, numerical
techniques are very much sought after. Two fundamental tenets of numerical methods are the methods
of finite difference and the methods using finite elements. Both methods call for the solutions of large

sparse matrices. In this paper, we shall present finite element simulations of the Burger’s equations
using MATLAB.
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Introduction

For problems of a fluid-flow nature where either shocks or viscous dissipation are important, Burger’s
equations are used to describe the phenomena. The one-dimensional Burger’s equation is given by

u, +uu, —pu =0 (1.1)

where © is a velocity-like dependent variable and is a viscosity-like parameter. The subscript ¢

indicates a time derivative and the subscript X is a spatial derivative. As a non-dimensional equation,
M is the inverse of the Reynold’s number.
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On differentiating with respect to X and setting u =y, we get
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We see that the Burger’s equation is a special case of

F(y)= exp(—— %,u ) (1.2)

Cole-Hopf transformation is applicable to higher space dimensional Burger’s equation. The 2-space
dimensional Burger’s equation is given by '

U Hun, vy, =y(uxx+uyy) (1.3a)

Vet uvy + vy, = H(Vyx +~vyy) (1.3b)

Using the Cole-Hopf transformation in a similar fashion, equations (1.3a) and (1.3b) can also be
reduced to the standard heat conduction equation

$ =0 +0,,

This familiar looking equation can be simulated using finite differencing or finite
elementization from which systems of large sparse matrix equation have to be solved. These systems
can be effectively solved using iterative methods.

The steady-state 2-space Dimensional Burger’s Equation.

The 2-space dimension Burger’s equation is as given in equations (1.3a) and (1.3b)
Taking w = -2uln¢ in equation (1.2), we get
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whence equation (1.3a) becomes
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Finite Element Analog

For the steady state Burger’s equation, we have
o +9,, =0 (3.1

Equation (3.1) can be solved numerically by either finite difference modelling or using finite elements.

In the method, we minimize a quadratic functional and assume an approximate solution to equation

(3.1) in the form of a finite series ' ‘ '
From the one —dimensional second-order differential equation,

d du ' ;
——(a(x)—/)-f(x)=0 for x, <x<x, (3.2)
dx dx
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we construct the variational formulaticn of equation (3.2) over the entire domain. We have, over an
element

dv du
ff:“ (a(X);l;E - vf(x) )dx ~ v )P = v(x ot )P (3.3)
where
du du
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Taking into account of the boundary conditions which are usually known or specified U, and P,, we

have finally to solve an algebraic linear system of equations. The assembled matrix equation is given

by
[x]{v}={F}

For the two space dimensions problems , we subdivide the domain of definition equation (3.1)
into triangles with no edges on the boundaries, triangles with at least on edge on the Neumann
boundary and triangles with neither of the first two properties. The solution to equation (3.1) is
approximated by a combination of a finite number of functions called the basis or trial functions. For
the complete problem, suppose that the two dimensional partial differential equation is given by

0 Ou 0 ou
—(p(x,y)—) + —(q(x,y)—) + r(x, Y)u(x,y) = f(x,¥) (x,y)e D
Ox ox Oy Oy
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with the boundary conditions
u(x,y)=glx,y) on §,

ou ou
p(x,y)é—cowl +4q(x, y)a—cosé’z + g (x, nu(x,y) = g,(x,¥) on §,
X X

Note that the cosines of the angles have been taken into consideration when considering the normal
derivatives.

Just as in the one dimensional problem, we shall minimize the functional

1 o¢; 0p;
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where

m
$(x,y) = %7,@5,' (*,5)

and @,,4,,......,¢,, are piecewise polynomials.
For a minimum, we will get

04, 09, | 04, 09, ‘
= [fplp(x, y)——-—— q(x, y)——=—r(x, )6 ;Jdxdy + [s, g (x, y)p;8,;dS
Ox dy Oy

B; =~lip f (x, y);dxdy + [s g,;4S - > @ik
n+l

With these data, we solve iteratively (or directly) the matrix equation A¢ =b where

A=(a;),b= B, By ,,Bn)T ande = (y;,75 e ,7n)T. Note that we work with double integrals
over triangles. We also need to compute all line integrals. Finally, we assemble the integrals over each

triangle into a linear system.
Finite Element Simulations For Steady-State Burger’s equation
Our reports constitute simulation work for the steady-state one dimensional as well as the two
dimensional Burger’s equation. This work is being carried out using MATLAB. Simulations for the
one dimensional problem are summarized in table 1 while those involving two dimensional problems
are given in table 2. In table 2, we present the matrix involving the interior points. We also present the
basis functions. We give a graphical form of the solution to one-dimensional problem in figure 1. Note
that the problems given have been added some spices.
Discussions and Conclusions
We have attempted in essence to solve partial differential equations of the type

o ou_ 0 Ou

—(p(x, ) )+ — () ) +r(x, Mulx, y) = f(x,y)  (x,y)e D

Ox ox oy oy

subject to

u(xsy) = g(x,y) on Sl
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ou ou o
p(x, y)a—cost91 +q(x, y)a—cost% + g, (x, Y)u(x,y)=g,(x,y) on S,
x y

by taking an approximation to the solutions of the form

m
P(x,y) = 21:}’,'¢i (x,»)

where @, , @, ,.......4,, are piecewise polynomials. In the spirit of the technique given in Rio [1], we shall

present the results which we have obtained. Table 3 gives the matrix obtained involving the interior
nodes while the basis functions are given in table 4. Note that the matrix involved is of the form which
warrants to be accelerated by the conjugate gradient method. This work is totally new and provides an
avenue for further pursuant. The algebraic structure we obtain is an insight into accelerating the
simulations using the conjugate gradient method. We observed that the solution sets can be divided into
two independent subsets, thus providing natural environment for parallel computing. Where parallel
computing is concerned, we discover that we can leverage on the number of processors. Note that the
concept of leveraging which has been applied in the brilliant compensation for network marketing is
perceived to be relevant.
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Figure 1 Finite Element Solutions For One dimensional Problem
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Table 1 Simulations For 2-Dimensional Problem(non-Hamilton)

410 - 407 -1
-407 470 -1 -1
-1 4 -1
-1 4 -1 -1
-1 -1, 40 -1 -1
: -1 -1 4 -1
-1 4. -1
-1 -1 4 -1
i -1 -1 4]

Table 2 Some Basis Functions(non-Hamilton)

¢, (x,y) = 1.00234869(~1 +10x +10y) + (1~ 10y) + (—1 + 10x)

#, (%, ) = 1.00234869(30 — 10x — 280) + 1.002325424(~30 + 10x + 290y) + (1 - 10y)
#5 (x, ) = 1.00232524(3 = 10x) + (1 — 10y) + 1.02560438(=3 + 10x + 10y) ‘

8, (%, ) = 1.00234869(2 — 10x) + 1.016591254(~2 + 10x + 10y) + (1 — 10x)

& (x, y) = 1.00234869(3 — 10x — 10y) +1.00232524(~1 + 10x)

@ (%, ) = 1.00232524(2 — 10y) + 1.01659125(2 — 10x) + 1.034607645(=3 + 10x + 10)
#,(x,y) = 1.00232524(4 — 10x — 10y) +1.02560438(~2 + 10x) + 1.034607645(~1 + 10)
5 (x, ) = 1.02560438(2 — 10y) + 1.05928151(—4 + 10x + 10y) + 1.034607645(3 — 10x)
B (%, y) = 1.02560438(5 — 10x — 10y) + 1.059281516(-1 + 10y) + 1.04081077 (-3 + 10x)

Table 3 Simulations For 2-Dimensional Problem(Hamilton)

4 -1 -1]
4 -1 -1
4 -1 -1 -1 -1
4 -1 -1
4 -1 -1
-1 -1 -1 4
-1 -1 -1 4
-1 -1 -1 4
-1 -1 -1 4
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Tabre 4 Some Basis Functions(Hamilton)

8, (x,) = 1.03113280(2 — 10x) + 1.04186022 3 (3 — 10y) + 106286529 9(—4 + 10x + 10y)
@, (x,y) = 1.095181072 (=5 +10x + 10) +1.06286529 8 (3 ~ 10) +1.06286529 9(3 - 10x)
#,(x,y) = 1041860223 (-3 +10x+10y) + 1.020855156 (2 — 10) +1.020855157 (2 — 10x)
#,(x, ) = 1.04186022 3(3 — 10x) + 1.03113280 5(2 — 10)) + 1.06286529 8(~4 + 10x + 10y)
&5 (x,y) = 1031132801 (-2 + 10y) + 1.041860223 (~1+10x) + 1.02085515 7(4-10x-10y)
B (x,) = 1.041860223(5 — 10x — 10y) + 1.062865298(~2 + 10x) + 1.06286529 (-2 +10y)
8, (x, ) = 101042757 4(3 — 10x — 10y) + 1.02085515 6(~1+ 10x) + 102085515 7(~1+ 10y)
B4 (x, ) = 1.041860223(=1+ 10y) + 1.031132805(=2 + 10x) + 1.020855156 (4 - 10x - 10)
B (x, y) = 1.031132801(10x) + (=3 +10y) + (4 - 10x - 10y)




