Universiti Teknologi Malaysia Institutional Repository

Multiview human action recognition system based on openpose and KNN classifier

Malik, Najeeb Ur Rehman and Abu Bakar, Syed Abdul Rahman and Sheikh, Usman Ullah (2022) Multiview human action recognition system based on openpose and KNN classifier. In: 11th International Conference on Robotics, Vision, Signal Processing and Power Applications, RoViSP 2021, 5 April 2021 - 6 April 2021, Virtual, Online.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/978-981-16-8129-5_136

Abstract

Human action recognition is one of the trending research topics in the field of computer vision. Human-computer interaction and video monitoring are broad applications that aid in the understanding of human action in a video. The problem with action recognition algorithms such as 3D CNN, Two-stream network, and CNN-LSTM is that they have highly complex models including a lot of parameters resulting in difficulty while training them. Such models require high configuration machines for real-time human action recognition. Therefore, present research proposes the use of 2D skeleton features along with a KNN classifier based HAR system to overcome the aforementioned problems of complexity and response time.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:deep learning, human action recognition, KNN
Subjects:Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions:Computing
ID Code:98813
Deposited By: Narimah Nawil
Deposited On:02 Feb 2023 09:14
Last Modified:02 Feb 2023 09:14

Repository Staff Only: item control page