

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

Manuscript Received: 12 June 2022, Received in Revised form: 25 July 2022, Accepted: 12 August 2022 DOI: 10.46338/ijetae0822_15

116

Performance Evaluation of Recurrent Neural Networks Applied

to Indoor Camera Localization
Muhammad S. Alam

1
, AKM B. Hossain

2
, Farhan B. Mohamed

3

1,2,3
School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Baharu, Johor, Malaysia

Abstract — Researchers in robotics and computer vision

are experimenting with the image-based localization of indoor

cameras. Implementation of indoor camera localization

problems using a Convolutional neural network (CNN) or

Recurrent neural network (RNN) is more challenging from a

large image dataset because of the internal structure of CNN

or RNN. We can choose a preferable CNN or RNN variant

based on the problem type and size of the dataset. CNN is the

most flexible method for implementing indoor localization

problems. Despite CNN's suitability for hyper-parameter

selection, it requires a lot of training images to achieve high

accuracy. In addition, overfitting leads to a decrease in

accuracy. Introduce RNN, which accurately keeps input

images in internal memory to solve these problems. Long-

short-term memory (LSTM), Bi-directional LSTM (BiLSTM),

and Gated recurrent unit (GRU) are three variants of RNN.

We may choose the most appropriate RNN variation based on

the problem type and dataset. In this study, we can

recommend which variant is effective for training more

speedily and which variant produces more accurate results.

Vanishing gradient issues also affect RNNs, making it difficult

to learn more data. Overcome the gradient vanishing problem

by utilizing LSTM. The BiLSTM is an advanced version of

the LSTM and is capable of higher performance than the

LSTM. A more advanced RNN variant is GRU which is

computationally more efficient than an LSTM. In this study,

we explore a variety of recurring units for localizing indoor

cameras. Our focus is on more powerful recurrent units like

LSTM, BiLSTM, and GRU. Using the Microsoft 7-Scenes and

InteriorNet datasets, we evaluate the performance of LSTM,

BiLSTM, and GRU. Our experiment has shown that the

BiLSTM is more efficient in accuracy than the LSTM and

GRU. We also observed that the GRU is faster than LSTM

and BiLSTM.

Keywords— Indoor camera localization, Gated recurrent

unit, Long-short term memory, PoseNet, Recurrent neural

network.

I. INTRODUCTION

Camera localization refers to estimating the camera pose

of an image from a random scene. An image, video, or

sequence of images as an input.

The output depends on how the scene is represented and

which method to estimate the camera's location. Many

vision applications, such as the navigation of mobile robots

and autonomous driving vehicles, can benefit from camera

localization. Navigation of mobile robots, autonomous

driving vehicles, and image-based localization of virtual

reality camera localization are essential aspects that have

recently attracted significant interest from academics and

industry. The most adaptable and cost-effective way

localize the camera in indoor environment use deep

architecture.

Deep learning has a wide range of applications, with

several achievements in the image processing field.

Convolutional neural networks are supposed to mimic the

activity of the visual cortex. On any visual identification

application, CNNs perform exceptionally well.

Convolutional layers and pooling layers are individual

layers in the CNN architecture. These layers enable the

network to encode the attributes of specific pictures. We

may use CNN to learn good visual features for localization

that seem resistant to motion blur and changes in light.

CNN is also suitable for hyperparameter selection or tuning

[1]. Convolutional Neural Networks (CNN), a deep

learning-based camera localization, performs convolution

operations on RGB images to estimate camera poses. The

first attempt to use CNNs for direct camera pose regression

was PoseNet [2] as shown in Figure 1. PoseNet computes

with fully connected layers and uses GoogLeNet as a

framework for feature extraction [3]. In Bayesian PoseNet,

researchers introduced PoseNet to account for uncertainty

in pose estimation [4]. Some other research has focused on

frameworks to improve camera localization. The

researchers combined global poses with relative poses by

predicting comparative poses from the image sequence [5].

Use a strategy to focus attention on geometrically

significant features [6]. They achieved pose regression

through multitasking learning that combines information

from associated activities.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

117

Fig. 1 PoseNet Architecture

A deep learning-based system usually requires large

annotated images to achieve high accuracy. To overcome

this challenge, use a 3D model to generate synthetic

images. To develop a map of benchmarks that

approximates the difference between synthetic and original

images in pattern representations [7]. To create a

geolocation image dataset, compare the synthesized images

with synthetic ones in a dataset [8]. With the difficulty of

CNN requiring a significant quantity of labeled data for

training, several researchers have turned to pre-trained,

fine-tuned deep architecture. They use GoogLeNet to

extract features, which are subsequently fine-tuned for

camera localization. In addition, CNN models create high-

dimensional feature vector output, which is prone to

overfitting in training data and degrades model accuracy.

There are also certain limitations in feature matching for

relative camera pose estimation.

RNNs are a type of neural network that is both powerful

and reliable, and one of the most intriguing algorithms now

in use because with internal memory. RNNs can keep

critical data about the input they receive thanks to their

internal memory, allowing them to forecast what will

happen next with extraordinary accuracy. They are the best

option for sequential data, such as time series. Compared to

other algorithms, recurrent neural networks can learn more

about a series. Because the user can only proceed along a

continuous trajectory, the user's present location is

associated with its past locations in the situation of indoor

localization. As a result, RNN uses the trajectory

parameters to improve localization accuracy. In [9], the

researchers use CNN-RNN architectures to constrain the

network by the temporal smoothness of camera motion.

In [10], the authors create a viewgraph using graph

neural networks to share non-consecutive frame

information. Short-term memory is a problem for recurrent

neural networks.

If the sequence is lengthy enough, it will have problems

passing information from earlier point steps to later ones.

When attempting to predict anything, the vanishing

gradient problem affects recurrent neural networks during

backpropagation. Gradients are values used to update the

weights of a neural network. When a gradient propagates

backward in time, it is called the vanishing gradient issue.

When a gradient value falls below a certain threshold, it

becomes useless for learning. However, RNNs have an

issue with vanishing gradients, making it challenging to

learn massive data sequences. Solutions use the LSTM idea

because LSTM makes the slope steep enough to keep the

training short and high accuracy.

The LSTM [11] is a recurrent neural network that can

learn long-term patterns from its data. A conventional

LSTM has input, output, and reset gates and a memory cell

that allows data to flow in and out of memory cells and is

controlled by the input and forget gates. They remove the

SoftMax layers and replace them with a 2048-dimensional

dense layer in GoogleNet for image feature extraction [3].

The initial weights are GoogleNet pre-trained on the

locations image dataset because of their appropriateness for

scene classification. The LSTM with CNN architecture

achieves structured dimensionality reduction and improves

localization accuracy [12]. In [9], the researchers

introduced an RCNN model for camera position regression

from image or video inputs, which can smooth pose

estimation. Creating synthetic images improves the camera

pose regression by using a 3D model created from natural

images [13]. In a coarse visual localization using images,

researchers compare natural and artificial images based on

features derived from a CNN using a similarity metric [8].

Researchers use a similarity metric to compare natural and

synthetic images based on information extracted from

CNN. The researchers classify the actual image based on

its similarity to a synthetic image with a known camera

pose. The BIM-PoseNet [14] model trains artificial images

extracted from a 3D model to predict authentic images'

camera position and orientation. They considered the result

with an accuracy of fewer than 2m by storing the natural

and synthetic images. Then, synthetic images were used to

simulate the uncertainty of pose estimation using Bayesian

BIM-PoseNet [14].

In [15], the researchers introduced the bidirectional

LSTM (BiLSTM). In the frame-wise phoneme regression

task, bidirectional LSTMs outperformed unidirectional

LSTMs and standard RNNs. According to the findings, a

bidirectional LSTM architecture is an excellent solution for

camera localization.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

118

A camera localization based on a hybrid bidirectional

LSTM system outperformed unidirectional LSTM. We

have tested bidirectional LSTMs on the camera localization

issue and beat the state-of-the-art camera localization on

online and offline data.

The network performance depends on the distance

between the LSTM units. When the network is over-fitted

with a more extended number of LSTM units, the network

performs well enough for validation data but rather poorly

for unknown test data. A gated recurrent unit (GRU) is a

more sophisticated RNN version that is more

computationally efficient than an LSTM [16]. Since it has

fewer training parameters, GRU uses less memory and

executes faster than LSTM. It has a more straightforward

structure than the LSTM and is better at handling small

datasets. It also uses less memory and produces more rapid

results.

In this paper, we measured the performance evaluation

of LSTM, BiLSTM, and GRU for indoor camera

localization using the reduced InteriorNet [17] and 7-

Scenes [18] dataset. End-to-end learning is used to train

different parameterized models for labeling temporal data.

II. RELATED WORKS

In [2], the authors developed the PoseNet architecture,

which uses a single RGB image to predict the camera pose.

This algorithm comprises a CNN trained end-to-end in

camera position and orientation. The main contribution is a

deep learning regression model for camera localization. It

focused PoseNet solely on GoogLeNet. It is also presented

a new camera rotation parameter suited for deep learning-

based camera pose regression. The results significantly

improve over earlier attempts in the indoor 7-Scenes

dataset [18] and the outdoor Oxford Robot-Car [19]

dataset. In [1], the researchers proposed a GPoseNet model

that regresses the camera pose from a single RGB image.

They did this model in Bayesian PoseNet, a probabilistic

version of the camera relocalization methods. It extracts

features from an RGB image and uses linear regression to

estimate the 6DoF pose of a moving camera. One difficulty

considered in computer vision is how to estimate people’s

locations in an interior space as precisely as workable.

Changing the weight-of-loss function in a 23-layer CNN

architecture [20]. Resize the pictures before the training

step to keep the entire image as the CNN input value [21]

suggested using a CNN model to generate important

features and estimate camera settings for 3D

reconstruction.

The LSA minimized its processed features using four

convolution layers and max-pooling to simplify the

network. GeoPoseNet [22] and GPoseNet [1] explore

different modules to improve localization instead of using

loss functions with fixed parameters or learnable loss

functions. GeoPoseNet [22] proposed the reprojection loss,

which characterizes the error in reprojecting the scene

geometry. The VidLoc architecture uses CNN-RNN

networks to constrain the network by temporal smoothness

of camera motion [9]. This model uses CNN to analyze

video image frames and a bidirectional LSTM to

incorporate temporal information. The LSTM is a

technique that allows ordinary RNNs to learn long-term

temporal dependencies. In [9], the researchers proposed a

recurrent model that employs several frames for pose

prediction to decrease pose estimate error. A CNN repeat

neural network (RNN) model for effective global

localization from a monocular image sequence is presented.

Using a texture-less 3D model of the indoor space in BIM-

PoseNet [14] and Bayesian BIM-PoseNet [14] avoids 3D

image-based reconstruction. In [12], the researchers

introduce a neural network-based PoseNet and LSTM for

single image regression. The researchers performed their

model on the Cambridge Landmarks datasets for content-

based image retrieval, where a Siamese network was

trained on pairs of images taken from a nearby location.

The performance is not good enough compared to the most

modern method. The LSTM approach is used [12]. Based

on this research, a deep architecture that uses syntactic

images for training and recurrent neural network-based

PoseNet directly estimates camera localization [23]. A

BIM-PoseNet [14] uses synthetic image sequences to

estimate the camera pose to improve localization

performance. This process reduced localization

performance caused by accounting for range changes

between synthetic and original images. Domain matching

approach to solving the localization performance

degradation problem [24]. The proposed network includes

a deep Bayesian CNN and an LSTM component to capture

the spatial-temporal interactions between subsequent

frames. The LSTM [11] is a recurrent neural network that

can learn long-term information from its data. In [25], the

researchers proposed a deep learning strategy for UWB

localization to address these UWB system problems for

indoor localization. Long-term and short-term memory

(LSTM) networks predict the user’s position in the

proposed deep learning model. Based on the TOA-distance

model of the UWB system, they suggest an LSTM model

estimate the current user location.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

119

In [26], the researchers proposed a novel deep ConvNet

training architecture for image-based camera localization in

urban streets. The VNLSTM-PoseNet network employs an

LSTM structure to decrease structural dimensionality and

chooses the most relevant features for real-time camera

pose regression on the fully connected layer. Although

transfer has developed learning approaches to minimize the

amount of training data necessary for RNNs, reducing

deployment costs, this has yet to be investigated in LSTM-

based indoor localization. In [27], the authors offer a

fingerprint localization architecture based on LSTMs that

uses transfer learning methods to deliver excellent accuracy

and low deployment costs. It lowers the cost of indoor

localization and makes it easier to use, making it more

widely available.

III. RNN ARCHITECTURE

This section presents the three models used in the

experiments, followed by a description of the chosen

architecture.

A. Recurrent Neural Network

RNN is a neural network-based memory space and loops

for dealing with sequence data. The RNN architecture is at

the heart of LSTMs. The basic structure of the RNN is

shown in Figure 2.

Fig. 2 Fully connected RNN architecture

Each time iteration t the hidden state is:

Where is the activation function, is the weight

matrix between the input and hidden layer, is the

weight matrix between the two hidden layers, and is a

bias vector of hidden layers. The network output is:

Where is the output layer activation function,

is the weight matrix between the hidden layer and output,

while is the output layer bias vector.

B. Long Short-Term Memory

The Long Short-Term Memory (LSTM) is a particular

type of RNN that prevents gradients from disappearing.

LSTMs using a technique known as gates may learn long-

term dependencies. These gates can tell us whether data in

a sequence should be kept or discarded. The three gates of

LSTM are input, forget, and output. Several advanced,

recurrent architectures, including LSTM and GRU [28],

have addressed the RNN. LSTMs were good at solving

sequence-based problems with long-term constraints, while

GRU, a much simpler LSTM architecture, was recently

developed and implemented in machine learning [29]. An

LSTM's control flow is like a recurrent neural network. As

it travels, it receives input and relays information. The

mechanisms within the LSTM cells differ, as shown in

Figure 3. The first gate of the LSTM is the forget gate. The

procedure will determine if the data is kept or discarded.

The sigmoid function transports data from the previously

hidden layer and current input data. Next, we will look at

the output gate. The output gate decides the hidden state's

next concealed state. It is important to remember that the

hidden state includes information from previous inputs.

The concealed state is also used to make predictions.

Fig. 3 LSTM Architecture

C. Bidirectional LSTM

Bidirectional LSTMs are LSTM models that use existing

data and the future of a single time step as input. At each

moment, we can preserve knowledge from the past and the

future in BiLSTM. Bidirectional RNN [30] is a BiLSTM

idea that analyzes sequence inputs in front and rear

directions using two separate hidden layers, as shown in

Figure 4.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

120

BiLSTM connect the two hidden layers to a virtually

identical output layer. Bidirectional long-term memory

(BiLSTM) seems to be the approach to storing forward and

backward sequence information in each neural network. A

bidirectional LSTM is a sequential processing system of

two LSTMs, one processing the input and the other

processing it backward. Bidirectional LSTMs (BiLSTM)

are LSTM systems that incorporate input data from a single

time step's past and future. In BiLSTM, we may store

information from the past and the future.

Fig. 4 BiLSTM architecture

D. Gated Recurrent Unit

The GRU is a relatively new recurrent neural network

that follows an LSTM. GRUs have rejected cell states in

favor of data transfer via the hidden state. There are two

gates: one is for reset, and the other is for an update. The

update gate works the same way as an LSTM forgets, and

input gates operate, as shown in Figure 5. It chooses which

data should be deleted and which can be re-entered. The

reset gate is another gate used to determine how much past

information should be lost. GRUs are relatively faster than

LSTMs because they contain fewer tensor operations.

Fig. 5 GRU architecture

E. Experimental Setup

As the foundation for the RNN architecture, we are

employing an RCNN framework that accepts an image

sequence as input and outputs positional and orientational

errors. Our experiments used three models: Long-shot

Term Memory (LSTM), another with bidirectional LSTM,

and the third with a GRU layer.

Bidirectional LSTM or GRU has the same formula as

LSTM. We performed backpropagation training using the

ADAM optimization method [31], which is relatively

tolerant of learning rate and other training parameters and

requires less fine-tuning. It trained the network uniformly

on two different datasets, InteriorNet [17], and 7-Scenes

[18], by resizing the images to 256 pixels. After that, we

adjusted the input images to have intensity values between

-1 and 1. The ResNet34 component of the network is pre-

trained on the ImageNet dataset while we randomly

initialize the other elements. We resize 256x256 pixels

images for the network using a random and central

cropping method throughout the training and testing

process. The augmentation phase is necessary to increase

the model's generalization capabilities under various

meteorological scenarios. We implement our plans in

Python 3.10 with PyTorch, using the Adam solver with a

learning rate of 5 x10
-5

. We trained the network with the

hyperparameters on a CPU: epoch 20, batch size 64, train

dropout 0.5, test dropout 0.0, and weight initializations of β

is 0.0 and γ is 3.0. This research is validated by comparing

the performance of many RNN networks, such as LSTM,

BiLSTM, and GRU. For the 7-Scenes [18] dataset and

reduced InteriorNet [17] dataset, we use the LSTM,

BiLSTM, and GRU networks.

IV. EXPERIMENTAL RESULTS

The dataset is provided first, followed by a list of the

measurement metrics used in the tests, and finally, the

findings and discussion.

A. Datasets

This study will evaluate the model using the InteriorNet

[17] dataset. Imperial College London released this data set

in 2018. The data set comprises 10K scenes, 1.7M rooms,

and 5M frames. RGB, depth, and semantic instances are

available in this dataset. The image resolution of the dataset

is 640x480. It included the camera and pose information in

the file cam0.info. It had all the intrinsic and extrinsic

parameters in the cam0.ccam file. This research also uses

the Microsoft 7-Scenes [18] dataset developed by

Microsoft Research. The 7-Scenes dataset comprises seven

separate interior worlds and is a commonly used RGB-D

dataset. The RGB-D images were taken with a 640x480

resolution handheld Kinect camera and linked to the

ground truth camera positions captured using the Kinect

fusion method. A detailed 3D model also accompanies each

scene. Each scene comprises multiple sequences of tracked

RGB-D camera frames split into training and testing data.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

121

B. Evaluation Metrics

Some error calculation techniques are used to evaluate

the performance of the deep learning regression model,

such as Mean Absolute Error (MAE), Mean Square Error

(MSE), and Root Mean Square Error (RMSE) (RMSE).

Mean Absolute Error (MAE):

Where is the predicted, and is the mean value.

Mean Square Error (MSE):

Where is the predicted, and is the mean value.

Root Mean Square Error (RMSE):

Where is the predicted, and is the mean value.

C. Hyperparameters Setup

The following parameters and hyperparameters have

been used for the training and testing of the model. Batch

size is 64, β is -3.0, crop size is 256, learning rate is 5e
-0.5

,

Testing dropout is 0%, training dropout is 5%, validation

frequency is 5, activation function is ReLU, and weight

decay is 0.0005.

D. Experimental Result for 7-Scenes Dataset

We used two separate datasets to test the three models

BiLSTM, LSTM, and GRU. The first one is the 7-Scenes

dataset with seven different scenes.

Accuracy: We exhibit the experimental results of the 7-

Scenes dataset in Table I. The median positional and

orientational errors of three architectures are BiLSTM

(0.26m, 9.65
0
), LSTM (0.31m, 9.85

0
), and GRU (0.35m,

10.23
0
), with BiLSTM scoring the highest in terms of

precision.

TABLE I

MEDIAN POSE ERROR FOR 7-SCENES DATASET

Network Median Pose Error

BiLSTM 0.26m, 9.650

LSTM 0.31m, 9.850

GRU 0.35m, 10.230

Speed: In terms of execution time, GRU outperforms both

LSTM and BiLSTM. GRU is not comparable to LSTM and

BiLSTM because its accuracy uses are significantly

superior. For the 7-Scenes dataset, GRU ran 8.43 ms,

whereas LSTM and BiLSTM ran 9.2 ms and 9.01 ms.

Table II shows the running time of BiLSTM, LSTM, and

GRU.

TABLE II

RUNNING TIME FOR 7-SCENES DATASET

Network Running Time

BiLSTM 9.01ms

LSTM 9.2ms

GRU 8.43ms

Evaluation Metric: Evaluate the model through LSTM,

BiLSTM, and GRU. The evaluation results of the three

distinct networks, as shown in Table III, for the 7-Scenes

dataset.

TABLE III

EVOLUTION METRIC FOR 7-SCENES DATASET

Network MAE MSE RMSE

BiLSTM 0.1131 0.0365 0.1911

LSTM 0.1182 0.0353 0.1880

GRU 0.1155 0.0364 0.1908

Losses: Figure 6, 7, & 8 demonstrate the training loss

versus the validation loss of BiLSTM, LSTM, and GRU.

We applied the test set after each epoch, and the model

learned during training was evaluated on the test data right

after each epoch.

Fig. 6 Train loss vs. validation loss of BiLSTM for the 7-Scenes

dataset

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

122

Fig. 7 Train loss vs. validation loss of LSTM for the 7-Scenes dataset

Fig. 8 Train loss vs. validation loss of GRU for the 7-Scenes dataset

E. Experimental Result for InteriorNet Dataset

We used two separate datasets to test the three models

BiLSTM, LSTM, and GRU. The second one is the

InteriorNet dataset, which contains ten thousand scenes.

Accuracy: We exhibits the experimental results of the

InteriorNet dataset experiments in Table IV. The median

positional and orientational errors of three architectures are

BiLSTM (0.26m, 9.65
0
), LSTM (0.35m, 9.97

0
), and GRU

(0.43m, 10.35
0
), with BiLSTM scoring the highest in terms

of precision.

TABLE IV

MEDIAN POSE ERROR FOR INTERIORNET DATASET

Network Median Pose Error

BiLSTM 0.31m, 9.720

LSTM 0.35m, 9.970

GRU 0.43m, 10.350

Speed: In terms of execution time, GRU outperforms both

LSTM and BiLSTM, as shown in Table V. GRU is not

comparable to LSTM and BiLSTM because its accuracy

uses are significantly superior. For the InteriorNet dataset,

GRU ran 8.9 ms, whereas LSTM and BiLSTM ran 9.8 ms

and 9.6 ms.

TABLE V

RUNNING TIME FOR INTERIORNET DATASET

Network Running Time

BiLSTM 9.6ms

LSTM 9.8ms

GRU 8.9ms

Evaluation Metric: Evaluate the model through LSTM,

BiLSTM, and GRU. The evaluation result of the three

distinct networks as shown in Table VI. Compared to the

LSTM and BiLSTM, GRU generates more minor errors.

TABLE VI

EVALUATION METRIC FOR INTERIORNET DATASET

Network MAE MSE RMSE

BiLSTM 0.1546 0.0730 0.2701

LSTM 0.1564 0.0718 0.2680

GRU 0.1617 0.0699 0.2644

Losses: Figure 9,10, &11 demonstrate the training loss

versus the validation loss of BiLSTM, LSTM, and GRU.

We applied the test set after each epoch of the model

learned during training was evaluated on the test data right

after each epoch. We can see that LSTM provides the best

value.

Fig. 9 Train loss vs. validation loss of BiLSTM for the InteriorNet

dataset

Fig. 10 Train loss vs. validation loss of LSTM for the InteriorNet

dataset

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

123

Fig. 11 Train loss vs. validation loss of GRU for the InteriorNet

dataset

V. CONCLUSION AND FUTURE WORKS

The output of CNN models is a high-dimensional feature

vector, which is prone to overfitting in training data and

reduces model accuracy. Then introduce an RNN to

address the difficulties mentioned above by storing

essential input data in internal memory. RNNs also have

vanishing gradient difficulties, making learning big data

sequences difficult. To solve the problem of vanishing

gradients, employ LSTM, which makes the gradient steep

enough to maintain the training rapid and accurate. A

bidirectional LSTM outperforms a single-direction LSTM.

A GRU is a more sophisticated RNN variation that is more

computationally efficient than a BiLSTM or LSTM. GRU

uses less memory and operates quicker than LSTM and

BiLSTM since it has fewer training parameters. This paper

assessed the performance of LSTM, BiLSTM, and GRU

using a reduced InteriorNet [17] and 7-Scenes [18] dataset.

As assessment metrics, median pose errors, loss, and

running time were calculated. The findings reveal that the

BiLSTM and LSTM are similar (BiLSTM scores are

slightly higher than LSTM); however, the BiLSTM and

LSTM have a longer running duration than GRU. As a

result, we recommend GRU with the smaller InteriorNet

[17] and 7-Scenes [18] data sets since they reasonably

generated good accuracy values.

In future, parameter optimization will examine the

impact of various parameter values. We will examine the

learning rate, dropout rate, and an increased number of

neurons in the hidden layers.

REFERENCES

[1] Cai, M., Shen, C., & Reid, I. (2019). A hybrid probabilistic model

for camera relocalization.

[2] Kendall, A., Grimes, M., & Cipolla, R. (2015). Posenet: A

convolutional network for real-time 6-dof camera relocalization. In

Proceedings of the IEEE international conference on computer
vision (pp. 2938-2946).

[3] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z.

(2016). Rethinking the inception architecture for computer vision.

In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 2818-2826).

[4] [4] Kendall, A., & Cipolla, R. (2016, May). Modelling uncertainty in
deep learning for camera relocalization. In 2016 IEEE international

conference on Robotics and Automation (ICRA) (pp. 4762-4769).

IEEE

[5] Laskar, Z., Melekhov, I., Kalia, S., & Kannala, J. (2017). Camera

relocalization by computing pairwise relative poses using

convolutional neural network. In Proceedings of the IEEE

International Conference on Computer Vision Workshops (pp. 929-

938).

[6] Wang, B., Chen, C., Lu, C. X., Zhao, P., Trigoni, N., & Markham,

A. (2020, April). Atloc: Attention guided camera localization.

In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 34, No. 06, pp. 10393-10401).

[7] Rad, M., Oberweger, M., & Lepetit, V. (2018). Feature mapping for
learning fast and accurate 3d pose inference from synthetic images.

In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 4663-4672).

[8] Ha, I., Kim, H., Park, S., & Kim, H. (2018). Image retrieval using

BIM and features from pretrained VGG network for indoor

localization. Building and Environment, 140, 23-31.

[9] Clark, R., Wang, S., Markham, A., Trigoni, N., & Wen, H. (2017).

Vidloc: A deep spatio-temporal model for 6-dof video-clip
relocalization. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 6856-6864).

[10] Xue, F., Wu, X., Cai, S., & Wang, J. (2020, June). Learning multi-
view camera relocalization with graph neural networks. In 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) (pp. 11372-11381). IEEE.

[11] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural computation, 9(8), 1735-1780.

[12] Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., &

Cremers, D. (2017). Image-based localization using lstms for
structured feature correlation. In Proceedings of the IEEE

International Conference on Computer Vision (pp. 627-637).

[13] Wu, Y., Tang, F., & Li, H. (2018). Image-based camera localization:
an overview. Visual Computing for Industry, Biomedicine, and Art,

1(1), 1-13.

[14] Acharya, D., Khoshelham, K., & Winter, S. (2019). BIM-PoseNet:

Indoor camera localisation using a 3D indoor model and deep

learning from synthetic images. ISPRS Journal of Photogrammetry
and Remote Sensing, 150, 245-258.

[15] Graves, A., & Schmidhuber, J. (2005). Framewise phoneme

classification with bidirectional LSTM and other neural network
architectures. Neural networks, 18(5-6), 602-610.

[16] Yang, L., Bai, Z., Tang, C., Li, H., Furukawa, Y., & Tan, P. (2019).
SANet: Scene agnostic network for camera localization.

In Proceedings of the IEEE/CVF International Conference on

Computer Vision (pp. 42-51).

[17] Wenbin, Li, Saeedi, S., McCormac, J., Clark, R., Tzoumanikas, D.,

Ye, Q., ... & Leutenegger, S. (2018). Interiornet: Mega-scale multi-

sensor photo-realistic indoor scenes dataset. arXiv preprint
arXiv:1809.00716.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (E-ISSN 2250-2459, Scopus Indexed, ISO 9001:2008 Certified Journal, Volume 12, Issue 08, August 2022)

124

[18] Glocker, B., Izadi, S., Shotton, J., & Criminisi, A. (2013, October).

Real-time RGB-D camera relocalization. In 2013 IEEE International

Symposium on Mixed and Augmented Reality (ISMAR) (pp. 173-
179). IEEE.

[19] Maddern, W., Pascoe, G., Linegar, C., & Newman, P. (2017). 1 year,
1000 km: The Oxford RobotCar dataset. The International Journal of

Robotics Research, 36(1), 3-15.

[20] Lu, E. H. C., & Ciou, J. M. (2020). Integration of Convolutional
Neural Network and Error Correction for Indoor Positioning. ISPRS

International Journal of Geo-Information, 9(2), 74.

[21] Wattanacheep, B., & Chitsobhuk, O. (2020, August). Camera Pose

Estimation using CNN. In 2020 the 3rd International Conference on

Control and Computer Vision (pp. 84-88).

[22] Kendall, A., & Cipolla, R. (2017). Geometric loss functions for

camera pose regression with deep learning. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.

5974-5983).

[23] Acharya, D., Singha Roy, S., Khoshelham, K., & Winter, S. (2020).
A Recurrent Deep Network for Estimating the Pose of Real Indoor

Images from Synthetic Image Sequences. Sensors, 20(19), 5492.

[24] Li, Q., Cao, R., Zhu, J., Hou, X., Liu, J., Jia, S., ... & Qiu, G. (2022).

Improving synthetic 3D model-aided indoor image localization via

domain adaptation. ISPRS Journal of Photogrammetry and Remote
Sensing, 183, 66-78.

[25] Poulose, A., & Han, D. S. (2020). UWB indoor localization using

deep learning LSTM networks. Applied Sciences, 10(18), 6290.

[26] Li, M., Qin, J., Li, D., Chen, R., Liao, X., & Guo, B. (2021).

VNLSTM-PoseNet: A novel deep ConvNet for real-time 6-DOF

camera relocalization in urban streets. Geo-spatial Information
Science, 24(3), 422-437.

[27] Brattinga, M. (2022). LSTM-based indoor localization with

Transfer Learning (Bachelor's thesis, University of Twente).

[28] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,

Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase

representations using RNN encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078.

[29] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical

evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555.

[30] Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural

networks. IEEE transactions on Signal Processing, 45(11), 2673-

2681.

[31] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

