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Abstract — Researchers in robotics and computer vision 

are experimenting with the image-based localization of indoor 

cameras. Implementation of indoor camera localization 

problems using a Convolutional neural network (CNN) or 

Recurrent neural network (RNN) is more challenging from a 

large image dataset because of the internal structure of CNN 

or RNN. We can choose a preferable CNN or RNN variant 

based on the problem type and size of the dataset. CNN is the 

most flexible method for implementing indoor localization 

problems. Despite CNN's suitability for hyper-parameter 

selection, it requires a lot of training images to achieve high 

accuracy. In addition, overfitting leads to a decrease in 

accuracy. Introduce RNN, which accurately keeps input 

images in internal memory to solve these problems. Long-

short-term memory (LSTM), Bi-directional LSTM (BiLSTM), 

and Gated recurrent unit (GRU) are three variants of RNN. 

We may choose the most appropriate RNN variation based on 

the problem type and dataset. In this study, we can 

recommend which variant is effective for training more 

speedily and which variant produces more accurate results. 

Vanishing gradient issues also affect RNNs, making it difficult 

to learn more data. Overcome the gradient vanishing problem 

by utilizing LSTM. The BiLSTM is an advanced version of 

the LSTM and is capable of higher performance than the 

LSTM. A more advanced RNN variant is GRU which is 

computationally more efficient than an LSTM. In this study, 

we explore a variety of recurring units for localizing indoor 

cameras. Our focus is on more powerful recurrent units like 

LSTM, BiLSTM, and GRU. Using the Microsoft 7-Scenes and 

InteriorNet datasets, we evaluate the performance of LSTM, 

BiLSTM, and GRU. Our experiment has shown that the 

BiLSTM is more efficient in accuracy than the LSTM and 

GRU. We also observed that the GRU is faster than LSTM 

and BiLSTM.  

Keywords— Indoor camera localization, Gated recurrent 

unit, Long-short term memory, PoseNet, Recurrent neural 

network. 

I. INTRODUCTION 

Camera localization refers to estimating the camera pose 

of an image from a random scene. An image, video, or 

sequence of images as an input.  

The output depends on how the scene is represented and 

which method to estimate the camera's location. Many 

vision applications, such as the navigation of mobile robots 

and autonomous driving vehicles, can benefit from camera 

localization. Navigation of mobile robots, autonomous 

driving vehicles, and image-based localization of virtual 

reality camera localization are essential aspects that have 

recently attracted significant interest from academics and 

industry. The most adaptable and cost-effective way 

localize the camera in indoor environment use deep 

architecture. 

Deep learning has a wide range of applications, with 

several achievements in the image processing field. 

Convolutional neural networks are supposed to mimic the 

activity of the visual cortex. On any visual identification 

application, CNNs perform exceptionally well. 

Convolutional layers and pooling layers are individual 

layers in the CNN architecture. These layers enable the 

network to encode the attributes of specific pictures. We 

may use CNN to learn good visual features for localization 

that seem resistant to motion blur and changes in light. 

CNN is also suitable for hyperparameter selection or tuning 

[1]. Convolutional Neural Networks (CNN), a deep 

learning-based camera localization, performs convolution 

operations on RGB images to estimate camera poses. The 

first attempt to use CNNs for direct camera pose regression 

was PoseNet [2] as shown in Figure 1. PoseNet computes 

with fully connected layers and uses GoogLeNet as a 

framework for feature extraction [3]. In Bayesian PoseNet, 

researchers introduced PoseNet to account for uncertainty 

in pose estimation [4]. Some other research has focused on 

frameworks to improve camera localization. The 

researchers combined global poses with relative poses by 

predicting comparative poses from the image sequence [5].  

Use a strategy to focus attention on geometrically 

significant features [6]. They achieved pose regression 

through multitasking learning that combines information 

from associated activities. 
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Fig. 1 PoseNet Architecture 

A deep learning-based system usually requires large 

annotated images to achieve high accuracy. To overcome 

this challenge, use a 3D model to generate synthetic 

images. To develop a map of benchmarks that 

approximates the difference between synthetic and original 

images in pattern representations [7]. To create a 

geolocation image dataset, compare the synthesized images 

with synthetic ones in a dataset [8]. With the difficulty of 

CNN requiring a significant quantity of labeled data for 

training, several researchers have turned to pre-trained, 

fine-tuned deep architecture. They use GoogLeNet to 

extract features, which are subsequently fine-tuned for 

camera localization. In addition, CNN models create high-

dimensional feature vector output, which is prone to 

overfitting in training data and degrades model accuracy. 

There are also certain limitations in feature matching for 

relative camera pose estimation.  

RNNs are a type of neural network that is both powerful 

and reliable, and one of the most intriguing algorithms now 

in use because with internal memory. RNNs can keep 

critical data about the input they receive thanks to their 

internal memory, allowing them to forecast what will 

happen next with extraordinary accuracy. They are the best 

option for sequential data, such as time series. Compared to 

other algorithms, recurrent neural networks can learn more 

about a series. Because the user can only proceed along a 

continuous trajectory, the user's present location is 

associated with its past locations in the situation of indoor 

localization. As a result, RNN uses the trajectory 

parameters to improve localization accuracy. In [9], the 

researchers use CNN-RNN architectures to constrain the 

network by the temporal smoothness of camera motion.  

In [10], the authors create a viewgraph using graph 

neural networks to share non-consecutive frame 

information.  Short-term memory is a problem for recurrent 

neural networks.  

If the sequence is lengthy enough, it will have problems 

passing information from earlier point steps to later ones. 

When attempting to predict anything, the vanishing 

gradient problem affects recurrent neural networks during 

backpropagation. Gradients are values used to update the 

weights of a neural network. When a gradient propagates 

backward in time, it is called the vanishing gradient issue. 

When a gradient value falls below a certain threshold, it 

becomes useless for learning. However, RNNs have an 

issue with vanishing gradients, making it challenging to 

learn massive data sequences. Solutions use the LSTM idea 

because LSTM makes the slope steep enough to keep the 

training short and high accuracy. 

The LSTM [11] is a recurrent neural network that can 

learn long-term patterns from its data. A conventional 

LSTM has input, output, and reset gates and a memory cell 

that allows data to flow in and out of memory cells and is 

controlled by the input and forget gates. They remove the 

SoftMax layers and replace them with a 2048-dimensional 

dense layer in GoogleNet for image feature extraction [3]. 

The initial weights are GoogleNet pre-trained on the 

locations image dataset because of their appropriateness for 

scene classification. The LSTM with CNN architecture 

achieves structured dimensionality reduction and improves 

localization accuracy [12]. In [9], the researchers 

introduced an RCNN model for camera position regression 

from image or video inputs, which can smooth pose 

estimation. Creating synthetic images improves the camera 

pose regression by using a 3D model created from natural 

images [13]. In a coarse visual localization using images, 

researchers compare natural and artificial images based on 

features derived from a CNN using a similarity metric [8]. 

Researchers use a similarity metric to compare natural and 

synthetic images based on information extracted from 

CNN. The researchers classify the actual image based on 

its similarity to a synthetic image with a known camera 

pose. The BIM-PoseNet [14] model trains artificial images 

extracted from a 3D model to predict authentic images' 

camera position and orientation. They considered the result 

with an accuracy of fewer than 2m by storing the natural 

and synthetic images. Then, synthetic images were used to 

simulate the uncertainty of pose estimation using Bayesian 

BIM-PoseNet [14].   

In [15], the researchers introduced the bidirectional 

LSTM (BiLSTM). In the frame-wise phoneme regression 

task, bidirectional LSTMs outperformed unidirectional 

LSTMs and standard RNNs. According to the findings, a 

bidirectional LSTM architecture is an excellent solution for 

camera localization.  
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A camera localization based on a hybrid bidirectional 

LSTM system outperformed unidirectional LSTM. We 

have tested bidirectional LSTMs on the camera localization 

issue and beat the state-of-the-art camera localization on 

online and offline data.  

The network performance depends on the distance 

between the LSTM units. When the network is over-fitted 

with a more extended number of LSTM units, the network 

performs well enough for validation data but rather poorly 

for unknown test data. A gated recurrent unit (GRU) is a 

more sophisticated RNN version that is more 

computationally efficient than an LSTM [16]. Since it has 

fewer training parameters, GRU uses less memory and 

executes faster than LSTM. It has a more straightforward 

structure than the LSTM and is better at handling small 

datasets. It also uses less memory and produces more rapid 

results.  

In this paper, we measured the performance evaluation 

of LSTM, BiLSTM, and GRU for indoor camera 

localization using the reduced InteriorNet [17] and 7-

Scenes [18] dataset. End-to-end learning is used to train 

different parameterized models for labeling temporal data. 

II. RELATED WORKS 

In [2], the authors developed the PoseNet architecture, 

which uses a single RGB image to predict the camera pose. 

This algorithm comprises a CNN trained end-to-end in 

camera position and orientation. The main contribution is a 

deep learning regression model for camera localization. It 

focused PoseNet solely on GoogLeNet. It is also presented 

a new camera rotation parameter suited for deep learning-

based camera pose regression. The results significantly 

improve over earlier attempts in the indoor 7-Scenes 

dataset [18] and the outdoor Oxford Robot-Car [19] 

dataset. In [1], the researchers proposed a GPoseNet model 

that regresses the camera pose from a single RGB image. 

They did this model in Bayesian PoseNet, a probabilistic 

version of the camera relocalization methods. It extracts 

features from an RGB image and uses linear regression to 

estimate the 6DoF pose of a moving camera. One difficulty 

considered in computer vision is how to estimate people’s 

locations in an interior space as precisely as workable. 

Changing the weight-of-loss function in a 23-layer CNN 

architecture [20]. Resize the pictures before the training 

step to keep the entire image as the CNN input value [21] 

suggested using a CNN model to generate important 

features and estimate camera settings for 3D 

reconstruction.  

The LSA minimized its processed features using four 

convolution layers and max-pooling to simplify the 

network. GeoPoseNet [22] and GPoseNet [1] explore 

different modules to improve localization instead of using 

loss functions with fixed parameters or learnable loss 

functions. GeoPoseNet [22] proposed the reprojection loss, 

which characterizes the error in reprojecting the scene 

geometry. The VidLoc architecture uses CNN-RNN 

networks to constrain the network by temporal smoothness 

of camera motion [9]. This model uses CNN to analyze 

video image frames and a bidirectional LSTM to 

incorporate temporal information. The LSTM is a 

technique that allows ordinary RNNs to learn long-term 

temporal dependencies. In [9], the researchers proposed a 

recurrent model that employs several frames for pose 

prediction to decrease pose estimate error. A CNN repeat 

neural network (RNN) model for effective global 

localization from a monocular image sequence is presented. 

Using a texture-less 3D model of the indoor space in BIM-

PoseNet [14] and Bayesian BIM-PoseNet [14] avoids 3D 

image-based reconstruction. In [12], the researchers 

introduce a neural network-based PoseNet and LSTM for 

single image regression. The researchers performed their 

model on the Cambridge Landmarks datasets for content-

based image retrieval, where a Siamese network was 

trained on pairs of images taken from a nearby location. 

The performance is not good enough compared to the most 

modern method. The LSTM approach is used [12]. Based 

on this research, a deep architecture that uses syntactic 

images for training and recurrent neural network-based 

PoseNet directly estimates camera localization [23]. A 

BIM-PoseNet [14] uses synthetic image sequences to 

estimate the camera pose to improve localization 

performance. This process reduced localization 

performance caused by accounting for range changes 

between synthetic and original images. Domain matching 

approach to solving the localization performance 

degradation problem [24]. The proposed network includes 

a deep Bayesian CNN and an LSTM component to capture 

the spatial-temporal interactions between subsequent 

frames. The LSTM [11] is a recurrent neural network that 

can learn long-term information from its data. In [25], the 

researchers proposed a deep learning strategy for UWB 

localization to address these UWB system problems for 

indoor localization. Long-term and short-term memory 

(LSTM) networks predict the user’s position in the 

proposed deep learning model. Based on the TOA-distance 

model of the UWB system, they suggest an LSTM model 

estimate the current user location.  
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In [26], the researchers proposed a novel deep ConvNet 

training architecture for image-based camera localization in 

urban streets. The VNLSTM-PoseNet network employs an 

LSTM structure to decrease structural dimensionality and 

chooses the most relevant features for real-time camera 

pose regression on the fully connected layer. Although 

transfer has developed learning approaches to minimize the 

amount of training data necessary for RNNs, reducing 

deployment costs, this has yet to be investigated in LSTM-

based indoor localization. In [27], the authors offer a 

fingerprint localization architecture based on LSTMs that 

uses transfer learning methods to deliver excellent accuracy 

and low deployment costs. It lowers the cost of indoor 

localization and makes it easier to use, making it more 

widely available. 

III. RNN ARCHITECTURE 

This section presents the three models used in the 

experiments, followed by a description of the chosen 

architecture. 

A. Recurrent Neural Network 

RNN is a neural network-based memory space and loops 

for dealing with sequence data. The RNN architecture is at 

the heart of LSTMs. The basic structure of the RNN is 

shown in Figure 2. 

 

Fig. 2 Fully connected RNN architecture 

Each time iteration t the hidden state  is: 

 

Where  is the activation function,  is the weight 

matrix between the input and hidden layer,  is the 

weight matrix between the two hidden layers, and  is a 

bias vector of hidden layers. The network output  is: 

 

Where  is the output layer activation function,  

is the weight matrix between the hidden layer and output, 

while   is the output layer bias vector. 

B. Long Short-Term Memory 

The Long Short-Term Memory (LSTM) is a particular 

type of RNN that prevents gradients from disappearing. 

LSTMs using a technique known as gates may learn long-

term dependencies. These gates can tell us whether data in 

a sequence should be kept or discarded. The three gates of 

LSTM are input, forget, and output. Several advanced, 

recurrent architectures, including LSTM and GRU [28], 

have addressed the RNN. LSTMs were good at solving 

sequence-based problems with long-term constraints, while 

GRU, a much simpler LSTM architecture, was recently 

developed and implemented in machine learning [29]. An 

LSTM's control flow is like a recurrent neural network. As 

it travels, it receives input and relays information. The 

mechanisms within the LSTM cells differ, as shown in 

Figure 3. The first gate of the LSTM is the forget gate. The 

procedure will determine if the data is kept or discarded. 

The sigmoid function transports data from the previously 

hidden layer and current input data. Next, we will look at 

the output gate. The output gate decides the hidden state's 

next concealed state. It is important to remember that the 

hidden state includes information from previous inputs. 

The concealed state is also used to make predictions. 

 
Fig. 3 LSTM Architecture 

C. Bidirectional LSTM 

Bidirectional LSTMs are LSTM models that use existing 

data and the future of a single time step as input. At each 

moment, we can preserve knowledge from the past and the 

future in BiLSTM. Bidirectional RNN [30] is a BiLSTM 

idea that analyzes sequence inputs in front and rear 

directions using two separate hidden layers, as shown in 

Figure 4.  
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BiLSTM connect the two hidden layers to a virtually 

identical output layer. Bidirectional long-term memory 

(BiLSTM) seems to be the approach to storing forward and 

backward sequence information in each neural network. A 

bidirectional LSTM is a sequential processing system of 

two LSTMs, one processing the input and the other 

processing it backward. Bidirectional LSTMs (BiLSTM) 

are LSTM systems that incorporate input data from a single 

time step's past and future. In BiLSTM, we may store 

information from the past and the future. 

 

Fig. 4 BiLSTM architecture 

D. Gated Recurrent Unit 

The GRU is a relatively new recurrent neural network 

that follows an LSTM. GRUs have rejected cell states in 

favor of data transfer via the hidden state. There are two 

gates: one is for reset, and the other is for an update. The 

update gate works the same way as an LSTM forgets, and 

input gates operate, as shown in Figure 5. It chooses which 

data should be deleted and which can be re-entered. The 

reset gate is another gate used to determine how much past 

information should be lost. GRUs are relatively faster than 

LSTMs because they contain fewer tensor operations. 

 
Fig. 5 GRU architecture 

E. Experimental Setup 

As the foundation for the RNN architecture, we are 

employing an RCNN framework that accepts an image 

sequence as input and outputs positional and orientational 

errors. Our experiments used three models: Long-shot 

Term Memory (LSTM), another with bidirectional LSTM, 

and the third with a GRU layer.  

Bidirectional LSTM or GRU has the same formula as 

LSTM. We performed backpropagation training using the 

ADAM optimization method [31], which is relatively 

tolerant of learning rate and other training parameters and 

requires less fine-tuning. It trained the network uniformly 

on two different datasets, InteriorNet [17], and 7-Scenes 

[18], by resizing the images to 256 pixels. After that, we 

adjusted the input images to have intensity values between 

-1 and 1. The ResNet34 component of the network is pre-

trained on the ImageNet dataset while we randomly 

initialize the other elements. We resize 256x256 pixels 

images for the network using a random and central 

cropping method throughout the training and testing 

process. The augmentation phase is necessary to increase 

the model's generalization capabilities under various 

meteorological scenarios. We implement our plans in 

Python 3.10 with PyTorch, using the Adam solver with a 

learning rate of 5 x10
-5

. We trained the network with the 

hyperparameters on a CPU: epoch 20, batch size 64, train 

dropout 0.5, test dropout 0.0, and weight initializations of β 

is 0.0 and γ is 3.0. This research is validated by comparing 

the performance of many RNN networks, such as LSTM, 

BiLSTM, and GRU. For the 7-Scenes [18] dataset and 

reduced InteriorNet [17] dataset, we use the LSTM, 

BiLSTM, and GRU networks.  

IV. EXPERIMENTAL RESULTS 

The dataset is provided first, followed by a list of the 

measurement metrics used in the tests, and finally, the 

findings and discussion. 

A. Datasets 

This study will evaluate the model using the InteriorNet 

[17] dataset. Imperial College London released this data set 

in 2018. The data set comprises 10K scenes, 1.7M rooms, 

and 5M frames. RGB, depth, and semantic instances are 

available in this dataset. The image resolution of the dataset 

is 640x480. It included the camera and pose information in 

the file cam0.info. It had all the intrinsic and extrinsic 

parameters in the cam0.ccam file. This research also uses 

the Microsoft 7-Scenes [18] dataset developed by 

Microsoft Research. The 7-Scenes dataset comprises seven 

separate interior worlds and is a commonly used RGB-D 

dataset. The RGB-D images were taken with a 640x480 

resolution handheld Kinect camera and linked to the 

ground truth camera positions captured using the Kinect 

fusion method. A detailed 3D model also accompanies each 

scene. Each scene comprises multiple sequences of tracked 

RGB-D camera frames split into training and testing data. 
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B. Evaluation Metrics 

Some error calculation techniques are used to evaluate 

the performance of the deep learning regression model, 

such as Mean Absolute Error (MAE), Mean Square Error 

(MSE), and Root Mean Square Error (RMSE) (RMSE).  

Mean Absolute Error (MAE): 

 

Where  is the predicted, and  is the mean value. 

Mean Square Error (MSE): 

 

Where  is the predicted, and  is the mean value. 

Root Mean Square Error (RMSE): 

 

Where  is the predicted, and  is the mean value. 

C.  Hyperparameters Setup 

The following parameters and hyperparameters have 

been used for the training and testing of the model. Batch 

size is 64, β is -3.0, crop size is 256, learning rate is 5e
-0.5

, 

Testing dropout is 0%, training dropout is 5%, validation 

frequency is 5, activation function is ReLU, and weight 

decay is 0.0005. 

D. Experimental Result for 7-Scenes Dataset  

We used two separate datasets to test the three models 

BiLSTM, LSTM, and GRU. The first one is the 7-Scenes 

dataset with seven different scenes. 

Accuracy: We exhibit the experimental results of the 7-

Scenes dataset in Table I. The median positional and 

orientational errors of three architectures are BiLSTM 

(0.26m, 9.65
0
), LSTM (0.31m, 9.85

0
), and GRU (0.35m, 

10.23
0
), with BiLSTM scoring the highest in terms of 

precision. 

 

 

TABLE I 

MEDIAN POSE ERROR FOR 7-SCENES DATASET 

Network Median Pose Error 

BiLSTM 0.26m, 9.650 

LSTM 0.31m, 9.850 

GRU  0.35m, 10.230 

Speed: In terms of execution time, GRU outperforms both 

LSTM and BiLSTM. GRU is not comparable to LSTM and 

BiLSTM because its accuracy uses are significantly 

superior. For the 7-Scenes dataset, GRU ran 8.43 ms, 

whereas LSTM and BiLSTM ran 9.2 ms and 9.01 ms. 

Table II shows the running time of BiLSTM, LSTM, and 

GRU. 

TABLE II 

RUNNING TIME FOR 7-SCENES DATASET 

Network Running Time 

BiLSTM 9.01ms 

LSTM 9.2ms 

GRU 8.43ms 

Evaluation Metric: Evaluate the model through LSTM, 

BiLSTM, and GRU. The evaluation results of the three 

distinct networks, as shown in Table III, for the 7-Scenes 

dataset. 

TABLE III 

EVOLUTION METRIC FOR 7-SCENES DATASET 

Network MAE MSE RMSE 

BiLSTM 0.1131 0.0365 0.1911 

LSTM 0.1182 0.0353 0.1880 

GRU 0.1155 0.0364 0.1908 

Losses: Figure 6, 7, & 8 demonstrate the training loss 

versus the validation loss of BiLSTM, LSTM, and GRU. 

We applied the test set after each epoch, and the model 

learned during training was evaluated on the test data right 

after each epoch.  

 
Fig. 6 Train loss vs. validation loss of BiLSTM for the 7-Scenes 

dataset 
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Fig. 7 Train loss vs. validation loss of LSTM for the 7-Scenes dataset 

 
Fig. 8 Train loss vs. validation loss of GRU for the 7-Scenes dataset 

E. Experimental Result for InteriorNet Dataset  

We used two separate datasets to test the three models 

BiLSTM, LSTM, and GRU. The second one is the 

InteriorNet dataset, which contains ten thousand scenes. 

Accuracy: We exhibits the experimental results of the 

InteriorNet dataset experiments in Table IV. The median 

positional and orientational errors of three architectures are 

BiLSTM (0.26m, 9.65
0
), LSTM (0.35m, 9.97

0
), and GRU 

(0.43m, 10.35
0
), with BiLSTM scoring the highest in terms 

of precision. 

TABLE IV 

MEDIAN POSE ERROR FOR INTERIORNET DATASET 

Network Median Pose Error 

BiLSTM 0.31m, 9.720 

LSTM 0.35m, 9.970 

GRU   0.43m, 10.350 

Speed: In terms of execution time, GRU outperforms both 

LSTM and BiLSTM, as shown in Table V. GRU is not 

comparable to LSTM and BiLSTM because its accuracy 

uses are significantly superior. For the InteriorNet dataset, 

GRU ran 8.9 ms, whereas LSTM and BiLSTM ran 9.8 ms 

and 9.6 ms.    

  

 

TABLE V 

RUNNING TIME FOR INTERIORNET DATASET 

Network Running Time 

BiLSTM 9.6ms 

LSTM 9.8ms 

GRU 8.9ms 

Evaluation Metric: Evaluate the model through LSTM, 

BiLSTM, and GRU. The evaluation result of the three 

distinct networks as shown in Table VI. Compared to the 

LSTM and BiLSTM, GRU generates more minor errors.  

TABLE VI 

EVALUATION METRIC FOR INTERIORNET DATASET 

Network MAE MSE RMSE 

BiLSTM 0.1546 0.0730 0.2701 

LSTM 0.1564 0.0718 0.2680 

GRU 0.1617 0.0699 0.2644 

Losses: Figure 9,10, &11 demonstrate the training loss 

versus the validation loss of BiLSTM, LSTM, and GRU. 

We applied the test set after each epoch of the model 

learned during training was evaluated on the test data right 

after each epoch. We can see that LSTM provides the best 

value. 

 

Fig. 9 Train loss vs. validation loss of BiLSTM for the InteriorNet 

dataset 

 

Fig. 10 Train loss vs. validation loss of LSTM for the InteriorNet 

dataset 
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Fig. 11 Train loss vs. validation loss of GRU for the InteriorNet 

dataset 

V. CONCLUSION AND FUTURE WORKS 

The output of CNN models is a high-dimensional feature 

vector, which is prone to overfitting in training data and 

reduces model accuracy. Then introduce an RNN to 

address the difficulties mentioned above by storing 

essential input data in internal memory. RNNs also have 

vanishing gradient difficulties, making learning big data 

sequences difficult. To solve the problem of vanishing 

gradients, employ LSTM, which makes the gradient steep 

enough to maintain the training rapid and accurate. A 

bidirectional LSTM outperforms a single-direction LSTM. 

A GRU is a more sophisticated RNN variation that is more 

computationally efficient than a BiLSTM or LSTM. GRU 

uses less memory and operates quicker than LSTM and 

BiLSTM since it has fewer training parameters. This paper 

assessed the performance of LSTM, BiLSTM, and GRU 

using a reduced InteriorNet [17] and 7-Scenes [18] dataset. 

As assessment metrics, median pose errors, loss, and 

running time were calculated. The findings reveal that the 

BiLSTM and LSTM are similar (BiLSTM scores are 

slightly higher than LSTM); however, the BiLSTM and 

LSTM have a longer running duration than GRU. As a 

result, we recommend GRU with the smaller InteriorNet 

[17] and 7-Scenes [18] data sets since they reasonably 

generated good accuracy values.  

In future, parameter optimization will examine the 

impact of various parameter values. We will examine the 

learning rate, dropout rate, and an increased number of 

neurons in the hidden layers. 
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