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Abstract: Information technology has become an integral aspect of the drug development process.
The virtual screening process (VS) is a computational technique for screening chemical compounds
in a reasonable amount of time and cost. The similarity search is one of the primary tasks in
VS that estimates a molecule’s similarity. It is predicated on the idea that molecules with similar
structures may also have similar activities. Many techniques for comparing the biological similarity
between a target compound and each compound in the database have been established. Although the
approaches have a strong performance, particularly when dealing with molecules with homogenous
active structural, they are not enough good when dealing with structurally heterogeneous compounds.
The previous works examined many deep learning methods in the enhanced Siamese similarity
model and demonstrated that the Enhanced Siamese Multi-Layer Perceptron similarity model (SMLP)
and the Siamese Convolutional Neural Network-one dimension similarity model (SCNN1D) have
good outcomes when dealing with structurally heterogeneous molecules. To further improve the
retrieval effectiveness of the similarity model, we incorporate the best two models in one hybrid
model. The reason is that each method gives good results in some classes, so combining them in
one hybrid model may improve the retrieval recall. Many designs of the hybrid models will be
tested in this study. Several experiments on real-world data sets were conducted, and the findings
demonstrated that the new approaches outperformed the previous method.

Keywords: drug discovery; ligand-based virtual screen; similarity model; Siamese architecture;
hybrid model

1. Introduction

Drug discovery often involves multiple stages, beginning with the identification of a
biological target, followed by the parallel screening of thousands of compounds and, finally,
the production of the new drug. This technique is time-consuming, costly, and plagued
with numerous difficulties. Virtual screening (VS) is a drug discovery computational tech-
nique that searches libraries of molecules for structures that are most able to belong to a
drug target at a reasonable cost and time. Virtual screening is classified into two types:
structure-based approaches, such as ligand-protein docking, and ligand-based approaches,
such as similarity searching, machine learning, and pharmacophore mapping [1–5]. Simi-
larity searching is the most effective and one of the maximal broadly used equipment for
ligand-based virtual screening because it requires only a bioactive molecule, or reference
structure, as the point to begin a database search. The fundamental concept underlying
similarity searching states that structurally compatible molecules will show off similar
physicochemical and organic properties. A similarity search compares target structure
characteristics with each structure’s attributes in the database. The degree of resemblance
of these two sets of features is used to measure the degree of closeness. Then, the database

Biomolecules 2022, 12, 1719. https://doi.org/10.3390/biom12111719 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12111719
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-7748-1840
https://doi.org/10.3390/biom12111719
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12111719?type=check_update&version=2


Biomolecules 2022, 12, 1719 2 of 29

structures are usually ranked in decreasing order of similarity to the target. When dis-
cussing LBVS, various elements must be considered, including molecular representation
and similarity coefficients, among others [6–11]. In cheminformatics, fingerprints are a
crucial and widely used concept. Their primary goal is to create numerical representations
of molecules’ structure or specific properties, allowing the comparison of two molecules to
be quantified [1]. Molecular characteristics are spread from physicochemical attributes to
structural features and are stored in various methods, referred to as molecular descriptors.
The molecular descriptor aims to capture the most important features of the molecule. To
compare the fingerprints of two chemicals, various similarity metrics can be used, such as
Euclidean distance, Manhattan distance, and Dice coefficient, but the Tanimoto coefficient
is the most preferred [5].

In recent years, data fusion has gained acceptance as one of the methods for improving
the performance of existing systems for ligand-based virtual screening. Data fusion is the
process of integrating numerous data sources into a single source using fusion techniques,
assuming that the outcomes of the fused source will be more valuable than the individual
input sources. For example, when many similarity coefficients were combined, it became
more active than when individual coefficients were employed [1,4,12,13]. Dasarathy pre-
sented one of the most well-known data fusion classification systems, which is made up of
the following five categories: (1) Data in-Data out, in which the raw data is inputted and
outputted, the outcomes are often more accurate or dependable; (2) Data in-Feature out, in
which the data fusion method uses the raw data from various participants at this level to
extract the features or characteristics that describe an object or class; (3) Feature in-Feature
out, in which the input and output of the data fusion procedure here are the features to
enhance, hone, or create new features; (4) Feature in-Decision out, this level produces a
set of decisions based on a collection of features that are obtained as input; (5) Decision
In-Decision Out: is also called decision fusion, to fuse the input decisions and produce
superior or novel judgments [14].

Several approaches were concerned with enhancing and increasing the retrieval ef-
fectiveness of the methods of similarity searching and the ways to calculate them. Several
efforts were taken to improve and increase the retrieval efficacy of similarity searching
methods, concluding that the Tanimoto coefficient is the industry-standard and outper-
forms others [15–18]. Some studies sought to include approaches from text document
retrieval and apply them to molecular searches, such as Abdo et al., who used a Bayesian
network that was originally used in the text field in document retrieval, and modified it as
the retrieval model in the cheminformatic area [6]. Furthermore, Al Dabagh et al. applied
quantum mechanics physics concepts to improve the molecular similarity searching and
molecular ranking of chemical compounds in LBVS [9]. Some researchers, such as Ahmed
et al., are working on weighting approaches to increase the retrieval effectiveness of a
Bayesian inference network, allowing more weights to be added to relevant fragments
while deleting the unnecessary ones [19–21]. Some studies looked into data fusion and pro-
posed that similarity measurements be merged by combining the screening results obtained
by employing multiple similarity measures. Nasser et al. fused several descriptors by
selecting the best features from each descriptor and then merging them in the new descrip-
tor [3,4,22]. Although the above methods outperform their predecessors, particularly when
dealing with molecules with homogeneous active structural elements such as molecules’
classes in MDDR-DS2 dataset as will shown in Section 3.1, the performances are not good
or satisfactory when dealing with molecules with a structurally heterogeneous nature such
as molecules’ classes in MDDR-DS3 dataset as will shown in Section 3.1.

On the other hand, The Siamese network has been used for more complicated data
samples, especially with heterogeneous data samples, and it is possible to employ deep
learning methods with Siamese architecture, which deals efficiently with the vast volume
of information stored in databases [23,24]. Altalib et al. employed many deep learning
methods in Siamese architecture after enhancing with two similarity measures and one
fusion layer to improve the retrieval effectiveness of molecules that have a structurally
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heterogeneous nature. The first study employed four methods of deep learning in Siamese
architecture, which are: Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM),
Convolutional Neural Network-two dimensions (CNN-2D), and Convolutional Neural
Network-one dimension (CNN-1D). The second study employed Multilayer Perceptron
(MLP) in Siamese architecture [25,26]. This study continues to improve the effectiveness of
similarity retrieval for molecules that have structurally heterogeneous by incorporating the
two best previous models into one hybrid model. The reason is that each method gives
good results in some classes, so combining them in one hybrid model may improve the
retrieval recall. The following are the main contributions of this study:

• The Siamese architecture for selected methods will be enhanced with three similarity
measures to better improve the similarity measurements between molecules.

• Incorporate many designs of a hybrid model from the selected two models. As
mentioned before, each method gives good results in some classes, so combining them
in one hybrid model may improve the retrieval recall.

• Compared to previous approaches, the proposed strategy yielded promising results in
terms of overall performance, particularly when dealing with heterogeneous classes
of molecules.

2. Methods
2.1. Siamese Architecture

Two identical artificial neural networks made up a Siamese neural network, each
capable of handling the input data, which must be coupled to a last layer via a distance
layer to foresee whether the two vectors belong to the same class. Because all the weights
and biases in the Siamese architecture are related, they are referred to as twins. Both
networks are symmetric as a result of this. Through training, the two neural networks also
utilize feedforward perceptron and error backpropagation. As a result, it has been used
on more complicated data samples, such as heterogeneous data samples with different
dimensions and type attributes [23,24]. This work is considered extensions of our previous
work [25,26]. Figure 1 shows steps for incorporating two enhanced Siamese similarity
models into one hybrid model.

Figure 1. The steps for incorporating two enhanced Siamese similarity models into one hybrid model.

The main goal of this work is to improve the retrieval efficiency of molecular similarity
searching, especially with structurally heterogeneous molecules, by incorporating two
enhanced Siamese deep learning similarity models in one hybrid model. Thus, the steps
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for incorporating two enhanced Siamese similarity models in one hybrid model will be
explained as follows:

1. We select the best two enhanced Siamese deep learning models from the previous
studies according to the Kendall W significance test for ranking the methods. The two
best methods in MDDR-DS3 (structurally heterogeneous) are the Siamese multi-layer
perceptron similarity model (SMLP) and Siamese convolutional neural network -one
dimension (SCNN1D) similarity model.

2. The Siamese architecture in the selected models will be enhanced with three similarity
measures. The reason for this is to further improve the measurements of similarity
between molecules in the hybrid model.

3. Incorporate the selected best two models in a hybrid model. Since each model gives
good results in some classes, combining them in one hybrid model may improve the
retrieval recall.

4. Testing many designs of hybrid models by using different types of data fusion to
select the best hybrid model that will give good results of the recall metric when using
with structurally heterogeneous molecules dataset. We select the best two enhanced
Siamese deep learning models from the previous phase according to the Kendall W
significance test for ranking the methods.

2.2. Hybrid Siamese Similarity Model Using Decision Fusion

The first design of the hybrid similarity model combines the two selected models from
the previous studies. The first model is the SMLP similarity model, and the second is the
SCNN1D similarity model. The reason is that each method gives good results in some
classes, so combining them in one hybrid model may improve the retrieval recall. The
architecture of the SMLP consists of two twin neural networks, each of which has only one
layer with 1024 neurons. The weights have also been linked in this architecture so that
Network1 = Network2. The first network reads the fingerprint from the query, and the
second reads the fingerprint from the database. The output of each network is a features
vector with a fixed length (here, 1024 features). The first similarity measure is the absolute
difference between the two feature vectors, and the output of this measure is the vector of
length 1024. The formula of this measure is [27]:

SAB = | fA − fB|. (1)

where SAB is the similarity measure, fA is the feature victor of network-1, and fB is the
feature vector of network-2. The second similarity measure is the exponential Manhattan
distance [28]. The output of this measure is one value. The formula of the exponential
Manhattan is:

EAB = exp
(
−∑| fA − fB|

)
. (2)

where EAB is the exponential Manhattan distance, fA is the feature vector of network1, and
fB is the feature vector of network2. The fusion layer has added the value of the second
similarity measure with each value of the vector of the first similarity measure. The output
of the fusion layer is passed to the following layers, which contain 1024, 512, 256, 128, and 64
neurons, respectively. Each neuron is connected with all neurons in the previous layer. The
ReLU activation function has been used for all layers. The Siamese architecture ends with
the output layer, which contains the active sigmoid function that gives the similarity score if
1 means complete similarity and if 0 means complete dissimilarity. Moreover, the RMSprop
optimizer has been used, and the binary_crossentropy has been used as a loss function. The
architecture of the SCNN1D similarity model consists of two twin neural networks, each of
which has two layers of convolution neural network (1D-CNN). The layers are made up of
64 filters with a kernel size of 3; the activation function is a rectified linear unit (ReLU), and
the maximum pooling size is 2. Then, there comes a flattened layer, followed by a dense
layer with a sigmoid activation function. In this design, the weights are connected so that
CNN1D-1 = CNN1D-2. The output of each network is a features vector with a fixed length
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(here, 512 features). The first similarity measure is the absolute difference between the two
feature vectors, and the output of this measure is the vector of length 512. The second
similarity measure is the exponential Manhattan distance. The output of this measure is
one value. The fusion layer has added the value of the second similarity measure with each
value of the vector of the first similarity measure. The output of the fusion layer is passed
to the end layer, which contains the active sigmoid function that gives the similarity score if
1 means complete similarity and if 0 means complete dissimilarity. Moreover, the RMSprop
optimizer has been used, and the binary_crossentropy has been used as a loss function.

The SMLP similarity model’s output (similarity score) will be fused with the output of
the SCNN1D similarity model by using decision fusion (maximum). Figure 2 shows the
details of the design of the hybrid Siamese similarity model with two similarity measures
using the decision fusion.

Figure 2. The design of the hybrid Siamese similarity model with two similarity measures using
decision fusion.

2.3. Hybrid Siamese Similarity Model with Three Similarity Measures Using Decision Fusion

The second design of the hybrid similarity model same as the first design of the hybrid
similarity model except using three similarity measures instead of two similarity measures.
The second design of the hybrid similarity model is the same as the first design of the
hybrid similarity model, except using three similarity measures instead of two similarity
measures. The first is the SMLP similarity model, and the second is the SCNN1D similarity
model. The third similarity measure will be added for each of them. The reason for that is
it further improves the measurements between molecules. The Jaccard similarity measure
will be added to the SMLP similarity model as the third similarity measure. The Russel
similarity measure will be added to the SCNN1D similarity model as the third similarity
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measure. The selection for these measures is based on experiments. The formula of the
Jaccard similarity measure [29]:

δAB=
∑N

i=1 fiA fiB

∑N
i=1 ( fiA)

2 + ∑N
i=1 ( fiB)

2 −∑N
i=1 fiA fiB

(3)

where the features of the query’s molecular is fiA, the features of the dataset’s molecular
is fiB, and N is the number of features in the vector. The formula of the Russel similarity
measure [29] is:

δAB=
∑N

i=1 fiA fiB

n
(4)

where fiA is the features of the query’s molecular, fiB is the features of the dataset’s molecular,
and n is the number of features. The SMLP similarity model’s output (similarity score) will
be fused with the output of the SCNN1D similarity model by using the decision fusion
(maximum). Figure 3 shows the details of the design of the hybrid Siamese similarity model
with three similarity measures using the decision fusion.

Figure 3. The design of the hybrid Siamese similarity model with three similarity measures using
decision fusion.

2.4. Hybrid Siamese Similarity Model with Three Similarity Measures Using Feature
Fusion Summation

The third design of the hybrid similarity model combines the two selected models: the
first is the SMLP similarity model, and the second is the SCNN1D similarity model. The
architecture here of the SMLP consists of two twin neural networks, each of which has only
one layer with 1024 neurons. The weights have also been linked in this architecture so that
Network1 = Network2. The first network reads the fingerprint from the query, and the
second reads the fingerprint from the database. The output of each network is a features
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vector with a fixed length (here, 1024 features). The first similarity measure is the absolute
difference between the two feature vectors, and the output of this measure is the vector of
length 1024. The second similarity measure is the exponential Manhattan distance. The
output of this measure is one value. The two formulas were covered in Section 2.2. The
third similarity measure is the Jaccard measure. The formula was covered in Section 2.3.
The output of this measure is one value. The feature fusion layer has added the value of the
third similarity measure with the value of the second similarity measure. Then, the result
has added with each value of the vector of the first similarity measure. The output of the
fusion layer is passed to the following layers, which contain 1024 512 neurons, respectively.
Each neuron is connected with all neurons in the previous layer. The ReLU activation
function has been used for all layers. The output of this model is a features vector with a
length of 512.

The architecture of the SCNN1D similarity model consists of two twin neural networks,
each of which has two layers of the convolution neural network (CNN1D). The layers are
made up of 64 filters with a kernel size of 3; the activation function is a rectified linear unit
(ReLU), and the maximum pooling size is 2. Then comes a flattened layer, followed by a
dense layer with a sigmoid activation function. In this design, the weights are connected
so that CNN1D-1 = CNN1D-2. The output of each network is a features vector with a
fixed length (here, 512 features). The first similarity measure is the absolute difference
between the two feature vectors, and the output of this measure is the vector of length
512. The second similarity measure is the exponential Manhattan distance. The output
of this measure is one value. The third similarity measure is that the Russel similarity
measure will be added to the SCNN1D similarity model as the third similarity measure.
The feature fusion layer has added the value of the third similarity measure with the value
of the second similarity measure. Then, the result has added with each value of the vector
of the first similarity measure. The output of the fusion layer is the feature vector, which
is considered as the output of second model. Figure 4 shows the details of the design of
the hybrid Siamese similarity model with three similarity measures using feature fusion
summation.

Figure 4. The design of the hybrid Siamese similarity model with three similarity measures using
feature fusion summation.
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The SMLP similarity model’s output (feature vector 512 bit) will be fused with the
output of the SCNN1D similarity model (feature vector 512 bit) by using feature fusion
(sum). The result of this layer will be passed to the last layer of the hybrid model, which
contains the active sigmoid function that gives the similarity score if 1 means complete
similarity and if 0 means complete dissimilarity. Moreover, the RMSprop optimizer has
been used, and the binary_crossentropy has been used as a loss function.

2.5. Hybrid Siamese Similarity Model with Three Similarity Measures Using Feature
Fusion Maximum

The fourth design of the hybrid similarity model is similar to the previous design
(third design), except using maximum operation instead of sum operation in the feature
fusion between the SMLP similarity model and the SCNN1D similarity model in the hybrid
model. Figure 5 shows the details of the design of the hybrid Siamese similarity model
with three similarity measures using the feature fusion maximum.

Figure 5. The design of the hybrid Siamese similarity model with three similarity measures using
feature fusion maximum.

3. Experimental Design
3.1. Datasets

Here, we evaluate the search methods for similarity by using MDL Drug Data Report
(MDDR) and the Maximum Unbiased Validation (MUV) data sets, which are the most
common [30,31]. The MDDR datasets have been used by our research group and previous
studies [3,4,6,9,10,19–22,25,26,32–40]. All molecules have been translated to ECFC-4 finger-
print by the Pipeline Pilot software, and our study community has used these databases. Ten
reference structures were chosen randomly from each activity class. The MDDR contains
three types of data sets, which are:
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1. MDDR-DS1: This consists of 102,516 molecules divided into activity and inactivity
groups. The activity molecules are split into 11 categories, with some having struc-
turally homogeneous active elements and others having structurally heterogeneous
active elements. Table 1 shows the activity classes of molecules in DS1.

2. MDDR-DS2: This contains 102,516 molecules divided into activity and inactivity
groups. The activity molecules are split into 10 groups of homogeneous activity
classes activity molecules. Table 2 shows the activity classes of molecules in DS2.

3. This contains 102,516 molecules divided into activity and inactivity groups; the activity
molecules are split into 10 groups of heterogeneous activity classes activity molecules.
Table 3 shows the activity classes of molecules in DS3.

Table 1. The MDDR-DS1 (structurally homogeneous and heterogeneous) activity classes.

Activity Class Activity Index Active Molecules Pairwise Similarity

Renin inhibitors 31420 1130 0.290
HIV protease inhibitors 71523 750 0.198

Thrombin inhibitors 37110 803 0.180
Angiotensin II AT1 antagonists 31432 943 0.229

Substance P antagonists 42731 1246 0.149
5HT3 antagonist 06233 752 0.140

5HT reuptake inhibitors 06245 359 0.122
D2 antagonists 07701 395 0.138

5HT1A agonists 06235 827 0.133
Protein kinase C inhibitors 78374 453 0.120
Cyclooxygenase inhibitors 78331 636 0.108

Table 2. The MDDR-DS2 (structurally homogeneous) activity classes.

Activity Class Activity Index Active Molecules Pairwise Similarity

Adenosine (A1) agonists 07707 207 0.229
Adenosine (A2) agonists 07708 156 0.305

Renin inhibitors 31420 1130 0.290
CCK agonists 42710 111 0.361

Monocyclic lactams β 64100 1346 0.336
Cephalosporins 64200 113 0.322
Carbacephems 64220 1051 0.269
Carbapenems 64500 126 0.260

Tribactams 64350 388 0.305
Vitamin D analogous 75755 455 0.386

Table 3. The MDDR-DS3 (structurally heterogeneous) activity classes.

Activity Class Activity Index Active
Molecules Pairwise Similarity

Muscarinic (M1) agonists 09249 900 0.111
NMDA receptor antagonists 12455 1400 0.098

Nitric oxide synthase inhibitors 12464 505 0.102
Dopamine -hydroxylase inhibitors 31281 106 0.125

Aldose reductase inhibitors 43210 957 0.119
Reverse transcriptase inhibitors 71522 700 0.103

Aromatase inhibitors 75721 636 0.110
Cyclooxygenase inhibitors 78331 636 0.108

Phospholipase A2 inhibitors 78348 617 0.123
Lipoxygenase inhibitors 78351 2111 0.113

Rohrer and Baumann documented the data gathering (MUV), as observed in Table 4.
This data collection contains 17 interaction groups, with each class including up to 30 active
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and 15,000 inactive molecules. Our research team has utilized these data collections in
prior papers.

Table 4. MUV structure activity classes.

Activity Class Activity Index Pairwise Similarity

S1P1 rec. (agonists) 466 0.117
Rho-Kinase2 (inhibitors) 644 0.122

SF1 (inhibitors) 600 0.123
Eph rec. A4 (inhibitors) 689 0.113

HIV RT-Rnase (inhibitors) 652 0.099
HSP 90 (inhibitors) 30 712 0.106

SF1 (agonists) 692 0.114
ER-b-Coact. Bind. (inhibitors) 733 0.114
ER-a-Coact. Bind. (inhibitors) 713 0.113

FAK (inhibitors) 810 0.107
ER-a-Coact. Bind. (potentiators) 737 0.129

FXIa (inhibitors) 846 0.161
Cathepsin G (inhibitors) 832 0.151

D1 rec. (allosteric modulators) 858 0.111
FXIIa (inhibitors) 852 0.150
PKA (inhibitors) 548 0.128

M1 rec. (allosteric inhibitors) 859 0.126

3.2. Performance Evaluation Measures

The effectiveness of the proposed approaches is assessed as follows:

1. The recall metric, which is the part of active chemical compounds that can be iden-
tified inside the top 1 and 5% of the ranking test set, is the first method for as-
sessing the retrieval model’s performance. This metric has already been utilized
in research [3,4,6,9,10,19–22,25,26,32–40]. Figure 6 shows the general steps of the
experimental design of this study.

Here, the whole dataset is separated into K equal-sized sets, one of which is designated
as a test set and the rest sets as training sets. The test set is changed in each iteration, and
the final result is determined as the average of the recall values from all iterations. As
observed in Figure 7, this procedure is known as k-fold cross-validation. Each iteration
tests 10 questions chosen at random from the activity class, and the mean value of these ten
searches is determined.

2. Comparison Methods: The second strategy is to look at existing approaches that
could be used to evaluate the outcomes of the proposed models and that use the same
datasets. Among these approaches are the following:

A. Tanimoto similarity coefficient (TAN): for many years, TAN has served as the
LBVS search benchmark technique. Tanimoto-based similarity models use the
Tanimoto coefficient in its continuous version for the ECFC-4 descriptor [15].

B. Bayesian inference (BIN), the second method is BIN for the ECFC-4 descrip-
tor [6].

C. Quantum similarity search (SQB); the third method is SQB, which utilizes a
quantum mechanics approach for the ECFC-4 descriptor [9].

D. Stack of Deep Belief Networks (SDBN): The latest study is multi-descriptor-
based on the Stack of deep belief networks method at the MDDR dataset (DS1,
DS2, and DS3) for ECFC-4, ECFP-4, and EPFP-4 descriptors. The molecular
features were reweighted using deep belief networks [4].

E. Enhanced Siamese Convolutional Neural network—one dimension (SCNN-
1D) [26] and Enhanced Siamese Multilayer perception (SMLP) [25], which are
compared with them before and after being combined into one hybrid model.
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Figure 6. The general steps of the experimental design of this study.

Figure 7. The cross validation for training and testing data.
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3. The Kendall W is the third significant measure that may be used to evaluate the
suggested procedures, often known as the significance test. This significance test has
already been utilized in prior research [3,4,9,10,19–22,25,26,29,32–34,36–42]. This test
can be construed as a measure of rater agreement. In the Kendall W test, each case
represents a judge or rater, and each variable represents an object or person being
rated. The number of rankings is computed for each variable. The Kendall W test
range is between (0), indicating no agreement, and (1) indicating full agreement. For
example, the rank rij by judge number j, which represents an activity class, where
there are n objects and m judges in total, is given to object i as the similarity search
method. It is then possible to calculate the total rank given to object i as [43]:

<i = ∑m
j=1 rij (5)

Whereas the complete ranks’ mean meaning is:

< =
1
2

m(n + 1) (6)

Squared deviation sum δ is defined as:

δ = ∑n
i=1 (<i −<)2 (7)

Then, the Kendall W test is defined as:

W =
12δ

m2(n3 − n)
. (8)

This test demonstrates whether a group of judges can make equivalent decisions about
the rating of a set of items or not. The definitions used in this analysis suggest that judges
were considered to be the behavior groups of each of the data sets, whereas the recall rates
of the different search models were considered to be the items. The outcomes of the Kendall
coefficient that are related to significance levels are a significant part of this experiment.
This implies verifying whether the value of the coefficient may have happened by chance
or not. If the value was important (for which both 0.01 and 0.05 cut-off values were used),
it was then possible to assign the item an overall ranking.

4. For a more evident comparison between the recall values of the proposed methods
and the recall values of the previous methods, the improvement percentage for each
proposed method will be calculated. The improvement percentage formula is [44].

Improvementmethod1 =
Recall method1 – Recall method2

Recall method1
× 100% (9)

where the Recall method1 represented the recall value of the first method, and Recall method2
represented the recall value of second method.

4. Results and Discussion

The ECFC-4 descriptor’s experimental outcomes on the MDDRDS1, MDDR-DS2,
MDDR-DS3, and MUV data sets are provided in Tables 5–12, respectively, using cut-offs
1 and 5%. In addition, the results of the proposed Hybrid Siamese Similarity Models are
recorded in these tables compared to the benchmark Tanimoto Similarity Coefficient (TAN)
and previous studies, which are Bayesian inference (BIN), quantum similarity search (SQB),
Stack of deep belief networks (SDBN) in MDDR datasets only, and two of our proposal
methods of Siamese architecture in previous studies, which are the SMLP similarity model
and SCNN1D similarity model. The hybrid Siamese similarity model with decision fusion
using two similarity measures is here called the Hybrid-D-Max2. The hybrid Siamese
similarity model with decision fusion using three similarity measures is here called the
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Hybrid-D-Max3. The hybrid Siamese similarity model with feature fusion summation is
here called the Hybrid-F-Sum. The hybrid Siamese similarity model with feature fusion
max is here called the Hybrid-F-Max. Each row in the tables lists recall values for the top
1% and 5% of the activity class, and in each row, the best recall rate is shaded. In the tables,
the mean row relates to the average of all activity classes, and the row of shaded cells is the
total number of shaded cells with the top values for each technique over the full range of
activity classes. The first column of the table represents the activity classes of the dataset.
This is followed by four columns that represent the previous studies: TAN, BIN, SQR, and
SDBN, and this is followed by two columns that represent the two proposed Siamese in
previous studies: SMLP, and SCNN1D. It is then followed by four columns representing
the proposed hybrid models in this study. Figures 8–15 show the contrast among methods
for the average recall percentage of successful compound retrieval at the top of the 1% and
5% in MDDRDS1, MDDRDS2, MDDRDS3, and MUV, respectively.

The results presented in MDDR-DS1 (structurally homogeneous and heterogeneous)
recall values for the 1 and 5% cut-offs recorded in Tables 5 and 6 showed that the proposed
hybrids of Siamese similarity models were obviously superior to the benchmark studies:
TAN, BIN, SQB, SDBN, and previous two selected proposed methods: Siamese SMLP and
SCNN1D. In addition, among other hybrid Siamese similarity models, the Hyper model
(Hybrid-F-Max) gives the best retrieval recall results in Table 5, in view of the mean and the
number of shaded cells, followed by the Hyper model (Hybrid-F-Sum), in view of the mean,
followed by the Hyper Siamese model (Hybrid-D-Max2) and the Hyper Siamese model
(Hybrid-D-Max3), in view of the mean, followed by the proposed methods in objective
one SCNN1D and SMLP, and followed by the SDNB, BIN, SQB, and TAN in view of the
mean. The improvement percentages of the hybrid-F-Max model in the mean recall values
compared with previous studies and the two proposed methods in objective one are 15.25,
21.09, 55.2, 48.28, 50.35, and 44.45 compared to SCNN1D, SMLPearly, TAN, BIN, SQB,
and SDNB, respectively. The improvement percentages of the hybrid-F-Sum model are
9.23,15.48, 52.03, 44.60, 46.82, 40.50 compared to SCNN1D, SMLP, TAN, BIN, SQB, and
SDNB, respectively. The improvement percentages of the hybrid-D-Max3 model are 0.41,
7.26, 47.37, 39.22, 41.65, 34.72 compared to SCNN1D, SMLP, TAN, BIN, SQB, and SDNB,
respectively. The improvement percentages of the hybrid-D-Max2 model are 0.89, 7.71,
47.62, 39.52, 41.94, and 35.03 compared to SCNN1D, SMLP, TAN, BIN, SQB, and SDNB
respectively. Figure 8 compares methods for the average recall percentage of successful
compound retrieval at the top 1% in MDDR-DS1. By comparison, the Hybrid-F-Max
proposed method gives the best retrieval recall results in Table 6 in view of the mean, and
the number of shaded cells, followed by the Hybrid-F-Sum, Hybrid-D-Max 2, Hybrid-D-
Max 3, SCNN1D, and SMLP. Then, SDNB, BIN, SQB, and TAN are in view of the mean. The
improvement percentages of the hybrid-F-Max model are 15.50, 18.26, 49.49, 45.24, 48.42,
and 40.69 compared to SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. The
improvement percentages of the hybrid-F-Sum model are 11.03, 13.94, 46.82, 42.35, 45.70,
and 37.55 compared to SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. The
improvement percentages of the hybrid-D-Max3 model are 0.49, 3.74, 40.52, 35.51, 39.26,
and 30.15 compared to SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. The
improvement percentages of the hybrid-D-Max2 model are 0.68, 3.92, 40.63, 35.64, 39.38,
and 30.28 compared to SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. Finally,
Figure 9 compares methods for the average recall percentage of successful compound
retrieval at the top 5% in MDDR-DS1.
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Table 5. Top 1% retrieval recall for MDDR-DS1 (structurally homogeneous and heterogeneous)
dataset for descriptor (ECFC 4).

DS1

Previous Studies
Previous in Our

Work
Proposed MethodsRetrieval

Result 1%

Activity
Index

TAN BIN SQB SDBN SCNN1D SMLP
Hybrid-
D-Max

2

Hybrid-
D-Max

3

Hybrid-
F-SUM

Hybrid-
F-Max

31420 69.69 74.08 73.73 74.21 84.58 84.19 84.22 83.88 86.94 88.28
71523 25.94 28.26 26.84 27.97 59.41 61.25 60.53 61.48 59.02 66.45
37110 9.63 26.05 24.73 26.03 52.88 46.56 52.94 50.28 46.42 58.13
31432 35.82 39.23 36.66 39.79 66.41 64.19 68.33 68.18 78.8 69.72
42731 17.77 21.68 21.17 23.06 38.88 42.69 42.19 42.81 34.02 55.45
6233 13.87 14.06 12.49 19.29 35.03 23.87 33.36 35.64 32.66 47.93
6245 6.51 6.31 6.03 6.27 10.68 6.79 10.9 10.85 19.02 16.25
7701 8.63 11.45 11.35 14.05 16.96 14.78 14.89 14.86 29.86 22.03
6235 9.71 10.84 10.15 12.87 15.31 12.82 16.32 14.29 26.97 23.58
78374 13.69 14.25 13.08 17.47 24.6 21.78 24.67 24.31 25.53 25.89
78331 7.17 6.03 5.92 9.93 8.58 5.94 8.69 8.44 16.12 14
Mean 19.857 22.931 22.014 24.631 37.57 34.99 37.91 37.73 41.39 44.34

Shaded cells 0 0 0 1 2 2 0 0 5 6

Figure 8. The comparison among methods for the average recall percentage at the top 1% in MDDR-
DS1 (homogeneous and heterogeneous).
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Table 6. Top 5% retrieval recall for MDDR-DS1 (structurally homogeneous and heterogeneous)
dataset for descriptor (ECFC 4).

DS1

Previous Studies
Previous in Our

Work
Proposed MethodsRetrieval

Result 5%

Activity
Index

TAN BIN SQB SDBN SCNN1D SMLP
Hybrid-
D-Max

2

Hybrid-
D-Max

3

Hybrid-
F-SUM

Hybrid-
F-Max

31420 83.49 87.61 87.22 89.03 87.35 90.82 87.55 87.58 90.43 94.06
71523 48.92 52.72 48.7 65.17 79.61 79.48 79.51 80.65 83.44 86.44
37110 21.01 48.2 45.62 41.25 76 73.91 76.55 75.56 81.71 84.54
31432 74.29 77.57 70.44 79.87 91.83 93.87 93.81 92.26 95.23 95.02
42731 29.68 26.63 24.35 31.92 57.52 61.06 61.2 62.53 69.74 77.27
6233 27.68 23.49 20.04 29.31 62.76 53.57 62.67 64.21 75.23 80.2
6245 16.54 14.86 13.72 21.06 28.9 20.9 27.94 28.54 34.79 39.35
7701 24.09 27.79 26.73 28.43 42.25 38.33 38.43 39.82 46.68 49.65
6235 20.06 23.78 22.81 27.82 40.36 35.98 39.93 37.3 51.65 53.21
78374 20.51 20.2 19.56 19.09 48.27 48.4 49.44 47.78 55.27 57.82
78331 16.2 11.8 11.37 16.21 25.02 22.65 27.23 26.77 35.06 39.69

Mean 34.77 37.7 35.51 40.83 58.17 56.27 58.57 58.45 65.38 68.84
Shaded cells 0 0 0 0 0 0 0 0 1 10

Figure 9. The comparison among methods for the average recall percentage at the top 5% in MDDR-
DS1 (homogeneous and heterogeneous).

Furthermore, the MDDR-DS2 (structurally homogeneous) recall values recorded for
the top 1% in Table 7 show that some of the proposed Siamese similarity models’ proposed
hybrids are superior to the benchmark TAN method and previous studies. The Hyper
Siamese with the decision fusion max model with three similarity measures Hybrid-D-Max
3 gives the best retrieval recall results in Table 7 in view of the mean, followed by SCNN1D
in view of the mean and the number of shaded cells, and followed by Hybrid-D-Max
2, Hybrid-F-Max, Hybrid-F-Sum, SDBN, BIN, SQB, SMLP, and TAN. The improvement
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percentages of the hybrid-D-Max3 model are 0.05, 7.42, 27.79, 6.34, 6.89, and 5.12 compared
to SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. The improvement percentages
of the hybrid-D-Max2 model are 4.01, 25.13, 2.89, 3.46, and 1.62 compared to SMLP, TAN,
BIN, SQB, and SDNB, respectively. The improvement percentages of the hybrid-F-Max
model are 3.74, 24.92, 2.62, 3.18, and 1.34 compared to SMLP, TAN, BIN, SQB, and SDNB,
respectively. The improvement percentages of the hybrid-F-Sum model are 2.97, 24.32, 1.84,
2.41, and 0.56 compared to SMLP, TAN, BIN, SQB, and SDNB, respectively. Figure 10 shows
the comparison among methods for the average recall percentage of successful compound
retrieval at the top 1% in MDDR-DS2. However, the MDDR-DS2 recall values recorded for
5% cut-offs in Table 8 show that the BIN method gave the best retrieval recall results in view
of the mean and the number of shaded cells. The second best is SQB, followed by SDBN,
Hybrid-D-Max 3, SCNN1D, Hybrid-D-Max 2, Hybrid-F-Max, Hybrid-F-Sum, Hybrid-D-
Max 2, and finally, TAN in view of the mean values. The improvement percentages of the
hybrid-D-Max model are 0.07, 5.36, and 16.24 compared to SCNN1D, SMLP, and TAN,
respectively. The improvement percentages of the hybrid-D-Max2 model are 3.09 and 4.22
compared to SMLP and TAN. The improvement percentages of the hybrid-F-Max model
are 2.51 and 13.71 compared to SMLP and TAN. The improvement percentages of the
hybrid-F-Max model are 1.83 and 13.11 compared to SMLP and TAN. Figure 11 shows
the comparison among methods for the average recall percentage of successful compound
retrieval at the top 5% in MDDR-DS2.

Table 7. Top 1% retrieval recall for MDDR-DS2 (structurally homogeneous) dataset for descriptor
(ECFC 4).

DS2

Previous Studies
Previous in Our

Work
Proposed MethodsRetrieval

Result 1%

Activity
Index

TAN BIN SQB SDBN SCNN1D SMLP
Hybrid-
D-Max

2

Hybrid-
D-Max

3

Hybrid-
F-SUM

Hybrid-
F-Max

7707 61.84 72.18 72.09 83.19 93.27 77.32 88.2 91.8 83.46 83.61
7708 47.03 96 95.68 94.82 94.84 89.94 93.16 94.9 92.32 93.1
31420 65.1 79.82 78.56 79.27 76.96 80.66 80.02 80.64 78.93 77.35
42710 81.27 76.27 76.82 74.81 84.55 80.55 85.82 84.73 84.45 84.91
64100 80.31 88.43 87.8 93.65 97.63 89.33 96.47 95.66 91.73 93.22
64200 53.84 70.18 70.18 71.16 78.65 54.26 65.87 77.35 55.94 60.39
64220 38.64 68.32 67.58 68.71 90.81 87.91 82.62 90.53 92.29 92.34
64500 30.56 81.2 79.2 75.62 71.92 69.68 68.56 72.4 72.56 73.2
64350 80.18 81.89 81.68 85.21 87.32 83.66 85.27 88.34 84.99 85.06
75755 87.56 98.06 98.02 96.52 90.95 89.65 90.53 90.99 90.9 90.99

Mean 62.633 81.235 80.761 82.296 86.69 80.3 83.65 86.73 82.76 83.42
Shaded cells 0 3 0 0 3 1 1 1 0 1
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Figure 10. The comparison among methods for the average recall percentage at the top 1% in
MDDR-DS2 (homogeneous).

Table 8. Top 5% retrieval recall for MDDR-DS2 (structurally homogeneous) dataset for descriptor
(ECFC 4).

DS2

Previous Studies
Previous in Our

Work
Proposed MethodsRetrieval

Result 5%

Activity
Index

TAN BIN SQB SDBN SCNN1D SMLP
Hyper-
D-Max

2

Hybrid-
D-Max

3

Hybrid-
F-SUM

Hybrid-
F-Max

7707 70.39 74.81 74.37 73.9 95.85 85.17 89.9 94.83 88.29 87.17
7708 56.58 99.61 99.61 98.22 94.9 92.45 93.74 95.61 93.48 93.94
31420 88.19 95.46 94.88 95.64 94.12 94.42 95.82 95.72 95.49 94.89
42710 88.09 92.55 91.09 90.12 85.64 84.18 87.82 85.45 86.91 85.64
64100 93.75 99.22 99.03 99.05 98.93 94.21 98.58 98.39 95.92 96.41
64200 77.68 99.2 99.38 93.76 86.19 61.48 74 85.61 63.48 70.58
64220 52.19 91.32 90.62 96.01 94.07 92.62 89.93 94.04 93.72 94.28
64500 44.8 94.96 92.48 91.51 73.2 71.68 71.04 73.84 73.76 74.16
64350 91.71 91.47 90.78 86.94 90.7 89.58 92.26 90.7 90.6 90.65
75755 94.82 98.35 98.37 91.6 90.99 90.86 90.84 90.99 90.95 90.99

Mean 75.82 93.695 93.061 91.675 90.46 85.67 88.39 90.52 87.26 87.87
Shaded cells 1 4 3 1 1 0 2 0 0 0
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Figure 11. The comparison among methods for the average recall percentage at the top 5% in
MDDR-DS2 (homogeneous).

Moreover, the MDDR-DS3 (structurally heterogeneous) recall values for the 1 and
5% cut-offs recorded in Tables 9 and 10 demonstrated that the proposed hybrids Siamese
similarity models were superior to the benchmark TAN method and other studies: TAN,
BIN, SQB, SDBN, and previous two selected proposed methods: Siamese MLP and CNN1D.
In addition, among other hybrid Siamese similarity models, the Hyper Siamese with
Feature fusion Max model (Hybrid-F-Max) gives the best retrieval recall results in Table 9
in view of the mean and the number of shaded cells, followed by the Hyper Siamese with
Feature fusion Sum model (Hybrid-F-Sum) in view of the mean, followed by SMLP, the
Hybrid-D-Max3, SCNN1D, and the Hybrid-D-Max2, and followed by the SDNB, BIN, SQB,
and TAN in view of the mean. The improvement percentages of the hybrid-F-Max model
are 17.03, 12.64, 70.72, 65.68, 68.44, and 50.80 compared to SCNN1D, SMLP, TAN, BIN,
SQB, and SDNB, respectively. The improvement percentages of the hybrid-F-Sum model
are 14.62, 10.10, 69.87, 64.67, 67.52, and 49.37 compared to SCNN1D, SMLP, TAN, BIN,
SQB, and SDNB, respectively. The improvement percentages of the hybrid-D-Max3 model
are 4.06, 66.15, 60.31, 63.51, and 43.11 compared to SCNN1D, TAN, BIN, SQB, and SDNB,
respectively. The improvement percentages of the hybrid-D-Max2 model are 64.66, 58.57,
61.91, and 40.61 compared to TAN, BIN, SQB, and SDNB, respectively. Figure 12 compares
methods for the average recall percentage of successful compound retrieval at the top 1% in
MDDR-DS3. By comparison, the Hybrid-F-Max proposed method gives the best retrieval
recall results in Table 10 in view of the mean and the number of shaded cells, followed by the
Hybrid-F-Sum in view of the mean, Hybrid-D-Max 3, SMLP, SCNN1D, and Hybrid-D-Max
2. Then, SDNB, TAN, BIN, and SQB are in view of the mean. The improvement percentages
of the hybrid-F-Max model are 20.08, 16.35, 68.9, 69.00, 69.63, and 58.72 compared to
SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. The improvement percentages
of the hybrid-F-Sum model are 14.62, 10.64, 66.78, 66.88, 67.56, and 55.91 compared to
SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. The improvement percentages
of the hybrid-D-Max3 model are 8.94, 4.69, 64.57, 64.67, 65.40, and 52.97 compared to
SCNN1D, SMLP, TAN, BIN, SQB, and SDNB, respectively. The improvement percentages
of the hybrid-D-Max2 model are 60.67, 60.78, 61.59, and 47.79 compared to TAN, BIN,
SQB, and SDNB, respectively. Finally, Figure 13 compares methods for the average recall
percentage of successful compound retrieval at the top 5% in MDDR-DS3.
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Table 9. Top 1% retrieval recall for MDDR-DS3 (structurally heterogeneous) dataset for descriptor
(ECFC 4).

Ds3 Retrieval
Result 1%

Previous Studies
Previous in Our

Work
Proposed Methods

Activity
Index

TAN BIN SQB SDBN SCNN1D SMLP
Hybrid-
D-Max

2

Hybrid-
D-Max

3

Hybrid-
F-SUM

Hybrid-
F-Max

9249 12.12 15.33 10.99 19.47 38.01 43.06 38.53334 41.16666 45.12 42.19
12455 6.57 9.37 7.03 13.29 14.21 17.22 16.24286 18.37856 23.09 23.26
12464 8.17 8.45 6.92 12.91 25.98 29.13 26.79208 31.94058 37.31 41.33
31281 16.95 18.29 18.67 23.62 67.52 66.57 65.52382 64.7619 66.76 68.38
43210 6.27 7.34 6.83 14.23 29.34 28.08 28.78536 28.37696 36.05 37.35
71522 3.75 4.08 6.57 11.92 12 8.71 9.08571 10.985706 14.7 15.43
75721 17.32 20.41 20.38 29.08 52.11 52.83 50.48818 51.73228 54.43 56.06
78331 6.31 7.51 6.16 11.93 12.41 12.65 12.56694 12.125994 14.96 16.65
78348 10.15 9.79 8.99 9.17 13.85 18.18 15.999974 13.512192 14.33 15.79
78351 9.84 13.68 12.5 18.13 10.71 14.34 11.715648 14.8673 16.68 16.42

Mean 9.745 11.425 10.504 16.375 27.62 29.08 27.57 28.78 32.34 33.29
Shaded cells 0 0 0 1 0 1 0 0 1 7

Figure 12. The comparison among methods for the average recall percentage at the top 1% in
MDDR-DS3 (structurally heterogeneous).
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Table 10. Top 5% retrieval recall for MDDR-DS3 (structurally heterogeneous) dataset for descriptor
(ECFC 4).

Ds3 Retrieval
Result 5%

Previous Studies
Previous in Our

Work
Proposed Methods

Activity
Index

TAN BIN SQB SDBN SCNN1D SMLP
Hybrid-
D-Max

2

Hybrid-
D-Max

3

Hybrid-
F-SUM

Hybrid-
F-Max

9249 24.17 25.72 17.8 31.61 61.84 68.2 62.47778 71.52222 75.03 67.78
12455 10.29 14.65 11.42 16.29 32.97 38.59 34.05 41.58572 46.95 47.07
12464 15.22 16.55 16.79 20.9 46.12 51.01 47.70298 56.37622 60.95 80.2
31281 29.62 28.29 29.05 36.13 78.57 74.76 74.09524 73.14286 72.67 88.57
43210 16.07 14.41 14.12 22.09 54.47 53.08 52.09424 56.50262 62.08 51.15
71522 12.37 8.44 13.82 14.68 29.19 24.57 23.62858 30.95714 37.27 31.36
75721 25.21 30.02 30.61 41.07 77.31 80.99 76.6614 81.44882 83.46 98.66
78331 15.01 12.03 11.97 17.13 31.29 31.17 31.52754 35.32284 36.93 42.36
78348 24.67 20.76 21.14 26.93 31.89 37.33 35.51222 33.43086 38.41 47.8
78351 11.71 12.94 13.3 17.87 30.16 36.2 30.95734 40.02844 41.2 37.89

Mean 18.43 18.38 18 24.47 47.38 49.59 46.87 52.03 55.5 59.28
Shaded cells 0 0 0 0 1 0 0 0 4 6

Figure 13. The comparison among methods for the average recall percentage at the top 5% in
MDDR-DS3 (structurally heterogeneous).

Furthermore, the MUV recall values for the 1% cut-offs recorded in Table 11 demon-
strated that some proposed hybrid Siamese similarity models were superior to the bench-
mark TAN method and other studies: TAN, BIN, SQB, and previous selected proposed
method SCNN1D, except the SMLP method. In addition, among other hybrid Siamese
similarity models, the Hyper Siamese with Feature fusion Sum model (Hybrid-F-Sum)
gives the best retrieval recall results in Table 11 in view of the mean, followed by the
SCNN1D, Hybrid-D-Max3, Hybrid-F-Max, BIN, Hybrid-D-Max2, SQB, and TAN. The
improvement percentages of the hybrid-F-SUM model are 3.05, 50.64, 19.97, and 55.95
compared to SCNN1D, SQB, BIN, and TAN, respectively. The improvement percentages
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of the hybrid-F-Max model are 46.02, 12.48, and 51.83 compared to SQB, BIN, and TAN,
respectively. The improvement percentages of the hybrid-D-Max3 model are 46.79, 13.74,
and 52.52 compared to SQB, BIN, and TAN, respectively. The improvement percentages
of the hybrid-D-Max2 model are 33.08 and 40.29 compared to SQB and TAN. Figure 14
compares the methods for the average recall percentage of successful compound retrieval
at the top 1% MUV. By comparison, the Hybrid-F-Sum proposed method gives the best
recall results in Table 12 in view of the mean, followed by the Hybrid-F-Max in view of
the mean, Hybrid-D-Max 3, SCNN1D, and Hybrid-D-Max 2. Then, BIN, SQB, and TAN
are in view of the mean. The improvement percentages of the hybrid-F-SUM model are
7.17, 34.07, 22.10, and 38.63 compared to SCNN1D, SQB, BIN, and TAN, respectively. The
improvement percentages of the hybrid-F-Max model are 5.82, 33.11, 20.97, and 37.73
compared to SCNN1D, SQB, BIN, and TAN, respectively. The improvement percentages of
the hybrid-D-Max3 model are 4.33, 32.05, 19.72, and 36.75 compared to SCNN1D, SQB, BIN,
and TAN, respectively. The improvement percentages of the hybrid-D-Max2 model are
17.61, 2.65, and 23.30 compared to SQB, BIN, and TAN, respectively. Figure 15 compares
the methods for the average recall percentage of the successful compound retrieval at the
top 1% in MUV.

Table 11. Top 1% retrieval recall for MUV dataset for descriptor (ECFC4).

MUV 1%
Previous Studies Previous in Our Work Proposed Methods

Activity Index

TAN BIN SQB SCNN1D SMLP
Hybrid-
D-Max

2

Hybrid-
D-Max

3

Hybrid-F-
SUM

Hybrid-F-
Max

466 3.1 6.33 1.38 6 6.67 4.33 4.00 4.00 3.00
548 8.62 14.89 11.38 13.33 28.67 18.00 23.33 26.00 23.67
600 3.79 6.33 5.52 5.33 14.67 7.33 7.00 8.33 9.00
644 7.59 11 8.97 15.33 14.67 20.33 20.67 23.67 20.00
652 2.76 7 3.79 5.33 12.00 4.33 8.67 8.67 8.33
689 3.79 7.33 4.48 3.67 8.00 5.00 7.67 7.67 8.00
692 0.69 5.33 1.38 3 6.67 3.33 3.33 3.33 3.67
712 4.14 8.22 5.17 10.67 8.67 4.00 6.67 7.00 7.00
713 3.1 5.89 2.76 4.67 6.00 3.67 4.67 5.33 4.33
733 3.45 6.67 4.14 3.67 6.00 4.00 5.33 5.00 4.67
737 2.41 5.11 1.72 6.33 7.33 3.00 4.00 5.00 4.67
810 2.07 6.78 1.72 4.67 6.67 4.33 3.67 3.33 3.00
832 6.55 12.55 8.28 21.33 16.67 8.00 16.00 18.33 17.00
846 9.66 13.11 12.41 26.33 16.00 13.33 17.00 18.00 16.33
852 12.41 13.78 9.66 33 18.00 18.33 23.00 25.00 21.00
858 1.72 5.11 1.38 3 7.33 3.67 4.00 3.33 3.67
859 1.38 4.89 2.41 4.33 6.67 4.33 3.67 3.33 3.00

Mean 4.54 8.25 5.09 10.00 11.22 7.61 9.57 10.31 9.43
Shaded cells 0 2 0 4 10 0 0 1 0
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Figure 14. The comparison among methods for the average recall percentage at the top 1% in MUV.

Table 12. Top 5% retrieval recall for MUV dataset for descriptor (ECFC4).

MUV 5%
Previous Studies Previous in Our Work Proposed Methods

Activity Index

TAN BIN SQB SCNN1D SMLP
Hybrid-
D-Max

2

Hybrid-
D-Max

3

Hybrid-F-
SUM

Hybrid-F-
Max

466 5.86 10.44 8.62 11 12.00 10.00 8.33 7.00 8.33
548 22.76 27.22 24.14 32 46.67 37.33 45.00 49.67 49.00
600 11.38 12.89 16.21 9.67 20.67 15.00 16.67 17.67 17.33
644 17.59 19.67 17.93 36.67 25.33 32.00 37.67 40.33 40.33
652 7.93 11.67 9.66 9.33 17.33 11.00 14.33 13.67 13.00
689 9.66 13.22 11.72 14 15.33 10.33 14.67 19.00 16.33
692 4.83 9.22 4.83 6 14.67 7.33 7.00 7.00 7.33
712 10.34 16.45 11.03 16.67 14.00 8.33 19.00 17.00 17.33
713 7.24 9 5.86 7.33 12.00 9.33 11.67 11.33 12.00
733 8.97 10.11 8.62 6.33 9.33 9.33 8.33 8.33 9.00
737 8.28 12 8.28 8.33 12.00 7.00 8.33 7.33 7.00
810 6.9 13.33 11.03 6.67 10.00 7.00 7.00 5.67 8.33
832 13.1 20.44 14.83 32 24.67 16.67 22.67 25.67 24.67
846 28.62 26.11 26.9 47 36.67 31.00 40.00 39.00 36.33
852 21.38 23.11 20 42.33 34.67 29.33 36.00 37.00 34.00
858 5.86 9.11 6.21 5 14.00 7.67 8.67 7.67 9.00
859 8.97 9.44 8.62 11.67 11.33 11.67 10.33 12.00 11.33

Mean 11.75 14.91 12.62 17.76 19.45 15.31 18.57 19.14 18.86
Shaded cells 0 3 0 3 7 0 1 4 1
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Figure 15. The comparison among methods for the average recall percentage at the top 5% in MUV.

The second method that can be used to evaluate the proposed methods is the signifi-
cance test. The Kendall W is the significance test that will be used in this study. Moreover,
Tables 13–16 show the ranking of the hybrid Siamese similarity models (Hybrid-F-Max,
Hybrid-F-Sum, Hybrid-D-Max3, Hybrid-D-Max 2) based on previous studies TAN, BIN,
SQB, Siamese MLP, and CNN1D, using Kendall W test results for MDDR-DS1, MDDR-DS2,
MDDR-DS3, and MUV at the top 1% and top 5%.

Table 13. Ranking of hybrid Siamese similarity models based on (TAN, BIN, SQB, SDBN, SCNN1D,
and SMLP) using Kendall W test results for DS1, at top 1% and 5%.

Dataset Retrieval
Percentage W P Rank Methods

DS1

1% 0.8214876 8.80 × 10−14

Hybrid-F-Max 9.55
Hybrid-F-SUM 8.09

Hybrid-D-Max 2 7.55
Hybrid-D-Max 3 6.91

SCNN1D 6.91
SMLPearly 5.36

SDBN 4.09
BIN 3.18
TAN 1.73
SQB 1.64

5% 0.8551465 1.91 × 10−14

Hybrid-F-Max 9.91
Hybrid-F-SUM 9.00

Hybrid-D-Max 3 6.64
Hybrid-D-Max 2 6.64

SCNN1D 6.36
SMLPearly 5.82

SDBN 3.91
BIN 3.00
TAN 2.18
SQB 1.55
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Table 14. Ranking of hybrid Siamese similarity models based on (TAN, BIN, SQB, SDBN, SCNN1D,
and SMLP) using Kendall W test results for DS2, at top 1% and 5%.

Dataset Retrieval
Percentage W P Rank Methods

DS2

1% 0.3603155 1.68 × 10−4

Hybrid-D-Max 3 7.95
SCNN1D 7.20

Hybrid-D-Max 2 6.30
Hybrid-F-Max 6.25

SDBN 6.00
BIN 5.75

Hybrid-F-SUM 5.20
SQB 4.85

SMLPearly 4.10
TAN 1.40

5% 0.3082167 1.05 × 10−3

BIN 7.95
SQB 7.25

SDBN 6.90
Hybrid-D-Max 3 6.15

SCNN1D 5.80
Hybrid-D-Max 2 5.30
Hybrid-F-Max 5.15
Hybrid-F-SUM 4.40

TAN 3.50
SMLPearly 2.60

Table 15. Ranking of hybrid Siamese similarity models based on (TAN, BIN, SQB, SDBN, SCNN1D,
and SMLP) using Kendall W test results for DS3, at top 1% and 5%.

Dataset Retrieval
Percentage W P Rank Methods

DS3

1% 0.7789091 1.45 × 10−11

Hybrid-F-Max 9.40
Hybrid-F-Sum 8.80

SMLPearly 7.10
Hybrid-D-Max 3 6.30

SCNN1D 6.10
Hybrid-D-Max 2 6.00

SDBN 4.70
BIN 3.00
SQB 2.00
TAN 1.60

5% 0.8673939 3.91 × 10−13

Hybrid-F-Sum 9.00
Hybrid-F-Max 8.90

Hybrid-D-Max 3 7.90
SMLPearly 7.00

Hybrid-D-Max 2 6.10
SCNN1D 6.10

SDBN 4.00
SQB 2.10
TAN 2.00
BIN 1.90
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Table 16. Ranking of hybrid Siamese similarity models based on (TAN, BIN, SQB, SCNN1D, and
SMLP) using Kendall W test results for MUV, at top 1% and 5%.

Dataset Retrieval
Percentage W P Rank Methods

MUV

1% 0.5593166 3.01 × 10−13

SMLP 7.79
Hybrid-F-Sum 6.35

BIN 6.06
Hybrid-D-Max 3 5.82
Hybrid-F-Max 5.56

SCNN1D 5.47
Hybrid-D-Max 2 4.41

SQB 2.00
TAN 1.53

5% 0.362653 5.52 × 10−8

SMLP 7.21
Hybrid-F-Max 6.26
Hybrid-F-Sum 6.12

Hybrid-D-Max 3 5.91
BIN 5.15

SCNN1D 4.88
Hybrid-D-Max 2 4.41

SQB 3.00
TAN 2.06

For all of the data sets used, the Kendall W test of the top 1% shows that the significance
test (P) values are less than 0.05; this means that the hybrid-enhanced Siamese similarity
models are significant in all cases with the top 1%. Therefore, the general ranking of all
methods indicates that the Hyper Siamese with Feature fusion Max model (Hybrid-F-Max)
and the Hyper Siamese with Feature fusion Sum model (Hybrid-F-Sum) are superior to
other methods and have the top rank in MDDR-DS1 (homogeneous and heterogeneous)
and MDDR-DS3 (structurally heterogeneous). In MDDR-DS2 (structurally homogeneous),
the hyper Siamese with the decision fusion max model with three similarities (Hybrid-D-
Max3) has the top rank among other methods. In the MUV dataset, the Hyper Siamese
with the Feature fusion Sum model (Hybrid-F-Sum) has the top rank among other methods
except the SMLP method.

It is the same as with the results of the Kendall W test of the top 5%. The results
indicate that significance test (P) values are less than 0.05. This means that the hybrid
Siamese similarity models are significant in all cases with the top 5%. As a result, the
general ranking of all methods indicates that the Hyper Siamese with Feature fusion Max
model (Hybrid-F-Max) and the Hyper Siamese with Feature fusion Sum model (Hybrid-F-
Sum) are superior to other methods and have the top rank in the MDDR-DS1(homogeneous
and heterogeneous) and MDDR-DS3 (structurally heterogeneous). In DS2, BIN has the top
rank in the top 5% and in the MUV dataset, the SMLP method has the top rank among
other methods, and then the Hyper Siamese with Feature fusion Max model (Hybrid-
F-Max). Figures 16 and 17 show the ranking of the hybrid Siamese similarity models
(Hybrid-D-Max2, Hybrid-D-Max3, Hybrid-F-Sum, Hybrid-F-Max) methods based on TAN,
BIN, SQB, SDBN, Siamese MLP, and CNN1D using Kendall W test results for MDDR-DS1,
MDDR-DS2, MDDR-DS3, and MUV in the top 1% and 5%, respectively.



Biomolecules 2022, 12, 1719 26 of 29

Figure 16. The ranking methods at the top 1%.

Figure 17. The ranking methods at the top 5%.

Lastly, according to the experiment results, the success of the proposed methods comes
from: (1) The Siamese network, which is used for more complicated data samples, especially
with heterogeneous data samples, and it is possible to employ deep learning methods with
Siamese architecture, which deals efficiently with the vast volume of information stored in
databases. (2) Enhancing the Siamese architecture with several similarity measures because
each similarity measure focused on different properties, so, when used together, they lead
to an improvement in the recall metric. (3) Incorporate the two selected models in one
hybrid model because each method provides good results in some classes, so combining
them in one hybrid model improved the retrieval recall. The two designs of hybrid models,
which used feature data fusion (Hybrid-F-Max and the Hybrid-F-Sum), gave good results
compared with the other two designs of hybrid models, which used decision data fusion
(Hybrid-D-Max3 and Hybrid-D-Max2) because the first two designs worked on the features,
which are enhanced by using the sum and max operation, and then led to improvements in
the recall metric. In comparison, the other two designs of hybrid models worked only on
selecting the max results between the methods (SMLP, SCNN1D) in their hybrid designs.
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Besides that, the proposed methods have good results in MDDR-DS3, MDDR-DS1, and
MUV because they contain heterogeneous molecule classes. In MDDR-DS2, the proposed
methods did not achieve a higher score than other traditional methods (TAN, BIN, SQB,
SDBN) because the dataset has only structurally homogeneous molecules classes. However,
some proposed methods have achieved better results at the top 1% only compared with
traditional methods.

5. Conclusions

Many techniques for capturing the biological similarity between a test compound
and a known target ligand in LBVS have been established. The similarity search is one
of the primary tasks in VS that estimates a molecule’s similarity. It is predicated on
the idea that molecules with similar structures may also have similar activities. In spite
of the good performance of the methods, especially when dealing with molecules that
have homogeneous active structural elements, they are not good enough when dealing
with structurally heterogeneous molecules. The previous works examined many deep
learning methods in the enhanced Siamese similarity model. According to Kendall W’s
significant test, the best two methods in MDDR-DS3 (structurally heterogeneous) are the
SMLP similarity model and the SCNN1D similarity model. To further improve the retrieval
effectiveness of the similarity model, we incorporate the best two models in one hybrid
model. The reason is that each method gives good results in some classes, so combining
them in one hybrid model may improve the retrieval recall. Many designs of the hybrid
models have been tested in this study. The overall results of all methods indicate that the
Hybrid-F-Max method and the Hybrid-F-Sum method are superior to previous studies
in DS1 and DS3 and have the top ranks among other methods at the top 1 and 5%, while
the Hybrid-D-Max3, Hybrid-D-Max2, and Hybrid-F-Max are superior to previous studies
in DS2 at the top 1%. In MUV, SMLP has the top rank, then Hybrid-F-Sum in the top 1%,
and Hybrid-F-Max, Hybrid-F-Max, and Hybrid-D-Max3. The future work of this study is
to reduce the size of the hybrid-enhanced Siamese similarity model by pruning the less
significant weights.
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