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A B S T R A C T   

Identification of plant disease is affected by many factors. The scarcity of rare or mild symptoms, the sensitivity 
of segmentation is influenced by light and shadow of images capturing conditions, and symptoms characteristics 
are represented by multiple lesions of varied colours on the same leaf at different stages of infection. Traditional 
approaches face several problems: contrast handling leads to mild symptoms being undetected and deals with 
edges results in curved surfaces and veins being considered new regions of interest. Thresholding of segmentation 
restricts it to a specific range of values, which prevents it from dealing with an entire area (healthy, injured, or 
noise). Deep learning approaches also face problems of dealing with imbalanced datasets. The existence of 
overlapped symptoms on the same leaf sample is rare. Most deep models detect a single type of lesion at a single 
time. Masks with a single type of infection are used for training these models that lead to misclassification. 
Manual annotation of symptoms is considered time-consuming. Therefore, the proposed framework in this study 
is an attempt to overcome certain drawbacks of traditional segmentation approaches to generate masks for deep 
disease classification models. The main objective is to label datasets based on a semi-automated segmentation of 
leaves and disordered regions. There is no need to manage contrast or apply filters that keep lesion character-
istics unchanged. As a result, every pixel in the predetermined lesions is selected accurately. The approach is 
applied to three different datasets with single and multiple infections. The obtained overall precision is 90%. The 
average intersection over the union of the injured regions is 0.83. The brown and the dark brown lesions are 
more accurately segmented than the yellow lesions.   

1. Introduction 

In agricultural production, plant diseases are the primary cause of 
economic losses worldwide. Diseases have a crucial impact on both the 
quality and yield of crops. The detection of mild lesions and the tax-
onomy of rare symptoms are considered current limitations due to the 
difficulty of providing experts to diagnose diseases in vast fields. 

Previous studies have proposed methodologies to detect two main 
types of fungi on coffee leaves. Lesions show significant variation in 
shape, size, texture, and region of interest (ROI) color. It is not easy to 
collect samples that combine all these variations. Adopting new infor-
mation has been considered sensible for most existing supervised or 

unsupervised approaches, but they fail to handle data under natural 
conditions [1,2]. There was a need for pre-processes, such as the resizing 
of images and conversion of them to greyscale [3], or taking color in-
formation from three channels, i.e., red, green, and blue [4], or seg-
menting lesions according to handcrafted approaches [5]. Due to the 
irregular shape of lesions, a previous study used a grey-level co-occur-
rence matrix and a local binary pattern that provided texture charac-
teristics of the infected regions [6] but considered a solution only for 
certain circumstances. 

Under natural conditions, a leaf has a curved surface, rather than 
being flat. The leaf shape can be changed due to biotic or abiotic factors. 
For example, with the progress of a disease life cycle, the leaf edge may 
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be directed upwards [7] or the leaf may become folded. They cause a 
contrast between regions. Therefore, noise or lack of consistency in 
image samples affects the detection of mild symptoms. Sometimes, noise 
may be misclassified and regarded as an infection. In some cases, his-
togram equalization leads to contrast stretching. It increases brightness 
[8] and makes mild symptoms challenging to be detected. 

The application of filters can facilitate handling of a particular type 
of lesion. The top-hat filter can enhance yellow spots; it makes them 
appear yellowish, thus rendering them detectable. Brown spots become 
darker or black, indicating another disease (for example, miner spots are 
dark brown while Phoma spots are even darker). This process changes 
the characteristics of spots by changing the intensities of the concerned 
area and enabling the detection of a single infection at a time [9–11]. 
Blurry filters like block-matching and 3D (BM3D) filters [12] may soften 
the noise effects, but they dissolve the edges of lesions, making them 
undetectable. 

On the other hand, manual labelling (background, healthy regions, 
and infected regions), or manual generation of symptom datasets, is 
considered time-consuming [13,14]. Any error at this level may affect 
the training process [15] unless experts perform the annotations. 

Segmentation is employed to separate leaves from the surrounding 
environment [16–20]. Segmentation is also employed to separate re-
gions of infection from healthy areas on leaves. In both cases, the 
number of clusters is unfixable. Therefore, there is a need to dynamically 
determine the number of clusters. In automatic segmentation, such as 
K-means clustering, finding the best centroids for each cluster to 

determine suitable centroid locations consumes time [21]. 
Other segmentation techniques, like Otsu’s thresholding, do not 

detect mild symptoms. A system has been proposed to separately detect 
rust and leaf miners on coffee leaves [22]. It applied Otsu’s thresholding 
for segmentation preceded by color analysis depending on the YCbCr 
colour space. However, the author cited anomalies concerning some 
misclassified cases of illuminated regions and identified them as infec-
tion. Edge detection [23] and contouring operations [24] consider the 
veins and curved surfaces of the leaf as new regions of interest. The 
modified color processing (MCP) approach, which depends on three 
transformation channels (red, green, and blue), has been demonstrated 
as effective in detecting all color gradients via the three channels [25]. 

Lighting condition is the factor that prevents detecting the ROI [26] 
when leaves are exposed to shady and light conditions unless additional 
procedures are performed to enhance the regions of infection or segment 
them. These processes handle lighting effects by, for example, random 
noise extraction [27] and contrast handling approaches with morpho-
logical operations [28]. The complicated background factor affects se-
mantic segmentation. A dense scale-invariant feature transform (DSIFT) 
algorithm was suggested to extract unrelated features [29]. It generated 
a sliding window that combined the ROI. However, it was challenging to 
distinguish between similar pathological characteristics of some symp-
toms at different stages of infection. Some lesions were nearly identical 
to the soil color [30] in the background. One of the common problems 
was the annotated images if they had a single lesion [31]. Therefore, 
overlapped lesions led to misclassification. Other studies have proposed 
modified architectures that accommodate classes in a target dataset, 
which is considered challenging [32]. 

Imbalanced dataset is another critical factor. Many models have been 
applied for semantic segmentation of leaves with complicated sur-
roundings [33]. The dominant regions in each sample of the target 
dataset were the healthy regions and the background. The lack of 
injured regions prevented the models from identifying them more 
accurately than the other regions. This paper is aimed to investigate the 
orientations of methods for overlapping plant disease detection. The 
study undertakes the following:  

• Investigates the ROI enhancement and detection techniques. 

Table 1 
The samples of individual leaves with multiple infections.  

Diseases No. of samples 

Miners and Phoma 1 
Rust and Phoma 2 
Brown spot and Cercospora 7 
Miners and Cercospora 15 
Miners and rust 112 
Rust and Cercospora 166 
Total 303  

Fig. 1. The proposed framework for lesion extraction.  
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• Proposes a framework for mask generation of a target dataset based 
on semantic segmentation of single and multiple symptoms.  

• Generates clusters dynamically based on the existing lesions on a 
single leaf. The results are compared to the traditional approaches. 

2. Materials and proposed framework 

2.1. Dataset of samples 

Three datasets are used for this study. The coffee dataset [34] in-
cludes 1685 samples of arabica coffee leaves with principal stresses 
(rust, leaf miner damage, Phoma, and Cercospora). Images are taken in 
the lab with a whiteboard background. Some samples contain over-
lapping symptoms. Table 1 shows the co-occurrence of these disorders. 
They appear at different stages of their life cycles. 

The RoCoLe dataset [35] contains 1560 image samples of Robusta 
coffee leaves. It combines healthy and infected samples (red spider mite 
and rust) at different levels. Each sample contains a single symptom. 
Samples were taken in a field with different weather conditions and 

complicated backgrounds. 
The apple dataset [36] contains 3735 healthy and diseased leaf 

samples. Two types of diseases are presented: Marssonina blotch and 
Alternaria leaf. A single leaf contains a symptom. Images are taken in 
different natural conditions from different angles, with solid and 
complicated backgrounds. 

2.2. Proposed framework 

Semantic segmentation techniques determine the ROI by detecting 
their directions and analyzing textural similarities. Therefore, the 
magnitude of the color gradient of these regions has a crucial role in all 
these techniques. A cut graph approach is used to isolate the foreground. 
A modified color analysis process is implemented to extract single and 
overlapped symptoms. The proposed framework is illustrated in Fig. 1. 
Each process is detailed in the subsequent subsections. 

2.2.1. Leaf segmentation 
One of the pixel labelling solutions of graph-cut is the GrabCut [37]. 

This is a method used for segmenting target objects from a complex 
environment. It depends mainly on a Gaussian mixture model (GMM). It 
is applied once on the foreground region and once on the background 
region. A Gaussian distribution is utilized for each cluster. According to 
the author, five clusters for each region are taken into considerations. It 
is a suitable number of clusters for complex environments. The GrabCut 
is also based on the min-cut, which provides segmentation for a leaf. 
Extracting the leaf from its surrounding background needs two nodes to 
be determined manually. The nodes represent starting and ending points 
of the leaf graph in the image. Fig. 2 below, shows the applied method to 
the three datasets. 

Fig. 2. Different samples of leaf segmentation where (a) represents images taken in lab conditions of the coffee dataset, (b) apple dataset and (c) RoCoLe dataset 
images taken with complicated background. 

Table 2 
Results of the proposed method applied to the existing disease overlap cases in 
coffee dataset.  

Overlapping symptoms IOU Infected Region IOU Healthy Region 

Miners and Phoma 0.9 0.9 
Rust and Phoma 0.9 0.9 
Cercospora and Phoma 0.9 0.9 
Miners and Cercospora 0.9 0.9 
Rust and miners 0.9 0.9 
Rust and Cercospora 0.9 0.9  
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2.2.2. ROI determination and extraction 
Generally, lesions are contoured by determining pixel intensities in 

the horizontal and vertical directions. In some cases, the veins and the 
curved surfaces are contoured (curved surfaces refer to the damage of 
symptoms or molecular causes). Consequently, a modified color pro-
cessing detection (MCPD) approach is adopted to select every pixel in 
the scattered lesions. The image is converted to three channels (red, 
green, and blue). The red and green pixel values (RPV and GPV) are 
subtracted from the greyscale image value (GIV) as follows: 

Modified  red  pixels  (MRP)=RPV − GIV (1)  

Modified  green  pixels  (MGP)=GPV − GIV (2) 

The MRP is accurately returned yellow pixel intensity, while the 
MGP is returned brown pixel intensity. However, some light spots could 
not be detected via the MRP or the MGP. Therefore, the MRP is altered as 
follows: 

Red  pixel  (RP)=MRP −
GPV
2

+
BPV
2

(3)  

AMRP=

{
0, else
p(i, j), RP(i, j) ≥ thresholding (4) 

P(i,j) represents the current pixel. The threshold value is greater than 
the mean of the most repeated values in the red pixel array. 

3. Results and discussion 

We compared the chosen segmentation method with other tradi-
tional image processing methods that are made in similar conditions 
(solid or natural background with individual leaf samples). The exper-
iment is conducted using Intel(R) Core(TM) i7-4710HQ CPU, 8G mem-
ory and Windows 10 Pro operating system. The Anaconda platform is 
used with python programming language. 

3.1. Quantative results 

The appearance of specific symptoms together led to choosing an 
approach that enables us to obtain the gradients of the ROI separately. 
This approach is applied to three different datasets. The number of 
segments is generated dynamically according to the existing lesions in a 
leaf. Two measures are used to evaluate the segmentation process. The 
intersection over union (IOU) is applied to determine whether every 
pixel in the detected ROI is correctly selected and matches the true ROI 
on the original leaf. A precision (PRC) measure is used to evaluate the 

Fig. 3. Lesion extraction using the modified color process approach for coffee dataset: (a) represents the extracted leaf, (b) represents the brown lesions, (c) yellow 
lesions, and (d) healthy regions. . (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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segmented regions compared to the ground truth. 

IOU=
Area  of  Intersection

Area of Union (5)  

PRC=
Match  (Segmented  Regions  ,Ground  Truth)

Segmented  Regions
(6) 

For the coffee dataset, the samples are taken with lab conditions. In 
the leaf segmentation stage, the obtained accuracy is 95%. All images 
are fixed with one position, which facilitates the detection of the leaf 
using a GrabCut approach (the terminal nodes that separate foreground 
from the background are set for all the samples). The evaluation mea-
sures are applied for the infected area in the lesion extraction stage, as 
shown in Table 2. The best IOU (0.9) is obtained for lesions and leaves. It 
is used for all existing lesions on an individual leaf. The overall precision 
obtained was 95%. Fig. 3 clarifies how yellow and brown lesions are 
extracted. 

For the RoCoLe dataset, the samples are taken with natural condi-
tions; all of the images are captured in the same direction, which 

facilitates the segmentation of the leaves using the GrabCut approach. 
The terminal nodes have almost the same position as the coffee dataset. 
Some background conflicts are shown in Fig. 2 (c) and 4 (a). The con-
tinuities of joint nodes in the background are overlapped with leaf 
nodes. These cases are adjusted manually. The obtained leaf segmen-
tation precision is 75%. The lesion extraction depends mainly on the cut 
graph and whether it has a complete representation for the leaf. Only in 
this case, the proposed method can segment all lesions successfully. The 
best IOU (0.9) is obtained for brown lesions, while the healthy regions 
have some conflicts with the close overlapped leaves. Fig. 4 clarifies how 
yellow and brown lesions are extracted. Table 3 explains the results of 
these samples. 

For the apple dataset, the samples are taken with natural conditions. 
The images are captured from different views, as in Fig. 6. The variety of 
shapes and colours of healthy regions made leaf segmentation compli-
cated. Leaves are assembled according to their similar shape and sights. 
The terminal nodes are manually chosen for each type. The obtained leaf 
segmentation precision is 75%. The best results are shown in Fig. 5, 
while the effects of lesion segmentation are clarified in Table 4. 

3.2. Comparisions and limitations 

Several traditional segmentation approaches are compared to the 
chosen method. These approaches were performed for an individual leaf 
and one type of symptom (Table 5). Several evaluation measures are 
used to verify whether every true-positive pixel in the segmented ROI 
has been selected accurately. 

The histogram equalization and K-means method [9] cannot detect 
some spots at early stages. Spots are selected as ROI. The applied 
equalization technique increased the false-positive pixels due to the ef-
fect of the direct light. In contrast, the method detected other symptoms 
more accurately. 

Fig. 4. Lesions extraction using the modified color process approach for the RoCoLe dataset. (a) represents the extracted leaf, (b) represents the yellow lesions, (c) 
brown lesions, (d) healthy regions, and (e) is the original image. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 3 
Results of the proposed method applied to the existing disease overlap cases in 
the coffee data set.  

Symptoms IOU symptom IOU healthy region 

Rust 0.9 0.9 
Rust 0.9 0.68 
Rust 0.8 0.9 
Red mite 0.9 0.8 
Red mite 0.9 0.9  
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Fig. 5. Lesion extraction using the modified color process approach for apple dataset. (a) represents the extracted leaf, (b) represents the brown lesions, (c) brown 
lesions, (d) healthy regions, and (e) is the original image. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 6. Samples of apple dataset.  
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Adaptive K-means clustering is an effective method [21] based on 
compactness and distance separation between classes. However, the 
number of clusters is inflexible using the k-means approach. The 
graph-cut and local binary pattern (LBP) method [38] is applied. It 
suggests segmenting the leaf as foreground using a graph-cut, then 
extracting features based on the LBP. According to the author, the 
approach is sensitive to noise, but it does not consider the effect of light. 
The light is embedded in the ROI. 

Leaf segmentation is based on a threshold value to retain only the 
ROI. This method is based on hue, saturation and value (HSV) color 
model transformation [39]; specific processes are applied to extract 
features (color coherence vector [CCV] and LBP). The threshold process 
is sensitive; under natural conditions, it is difficult to restrict healthy 
green regions within specific ranges, even with other color representa-
tions like longitude, latitude, and altitude (LAB) or HSV. In some cases of 
healthy leaves, the random noise of lighting effects prevents the recog-
nition of them as healthy. 

3.3. Discussion 

This method is proposed to generate masks for training disease 
classification models. The regions of diseases are represented in two 
colours (yellow and brown). The proposed framework overcomes the 
following segmentation problems: 

• The Gaussian mixture model provides various probability distribu-
tions for clusters [40]. Whatever the shape of the leaf is, it enables 
GrabCut segmentation to detect leaves despite the color gradations 
that belong to the leaf surface.  

• No need to apply any method to highlight lesions. The proposed 
framework focuses on determining the possible gradients of healthy 
regions in the target dataset and subtracting them from the leaf.  

• Can use it for symptoms dataset generation and masks generation. It 
can replace the manual annotation used for training a deep classifier. 

While the drawbacks concerning leaf and lesion segmentation are:  

• In the lesion segmentation stage, the healthy gradients regions may 
vary according to the selected leaf species. These gradients have to be 
chosen manually for each dataset. This drawback does not affect the 
disease detection process. It involves the disease severity estimation. 
Fig. 7(a) shows a manually made mask sample [34], and (b) shows 
the segments generated by our proposed method. Some pixels are 
segmented as a lesion, but no red pixels refer to them in the corre-
sponding mask because the value used for thresholding is greater 
than the suitable one for this sample.  

• In the leaf segmentation stage, terminal nodes are fixed according to 
the size of the leaf and its position. So, the variety in datasets requires 
manual intervention. 

4. Conclusion 

This study proposes a segmentation framework based on a graph-cut 
method and color analysis processes. The framework is applied to three 
different datasets where samples include individual and multiple in-
fections. The overall obtained precision is 90%. The best obtained IOU is 
for spots with brown gradients. Yellow spots can be determined 
correctly according to the predetermined healthy regions because their 
slopes are close to the green, especially at the early stages of infection. 

In future studies, we propose clustering the overlapped diseases in 
samples, so that deep classifiers can handle multiple diseases identifi-
cation separately. 
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Table 4 
Results of the proposed method applied to the existing disease overlap cases in 
the coffee dataset.  

Symptoms IOU Symptom IOU healthy region 

Marssonia Blotch 0.9 0.9 
Alternaria Leaf Spot 0.9 0.8 
Marssonia Blotch 0.8 0.9 
Marssonia Blotch 0.9 0.8 
Alternaria Leaf Spot 0.9 0.9  

Table 5 
Traditional state-of-the-art segmentation methods applied to overlapping 
symptoms.  

Method IOU PRC Entropy Acc. 

Histogram equalization and K-means [9] 0.9 90% 0.3 90% 
Adaptive K-means clustering [21] 0.9 90% 0.1 90% 
Graph cut and LBP [36] 0.8 85% 0.2 90% 
Threshold segmentation with CCV and LBP [37] 0.8 85% 0.2 99% 
Proposed method 0.9 90% 0.1 90%  

Fig. 7. Red spots in (a) represent the true set of ROI while (b) shows the proposed ROI. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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