CORROSION BEHAVIOUR OF DUCTILE CAST IRON

MOHAMED ASSNOUSI ALI

A Project report submited in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical Material)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

MAY 2009

To my late mother, my late father, my brothers and sisters for their support and care

ACKNOWLEDGEMENT

First of all, Praise to Allah, the Most Gracious and Most Merciful, Who has created the mankind with knowledge, wisdom and power.

I would like to express my utmost gratiude to my supervisor, Dr Astuty Amrine and AssociateProfessor Dr Ali Ourdjini for benig a dedixated mentor as well as for his valuable and valuable and constructive suggestions that enabled this project to run smoothly.

Also,not forgetting my friends and classmates, I convey my full appreciation for his valuable and contributions toward this project, whether directly or indirectly.

Last but not least, I am forever indebted to all my family member for their constant support throughout the entire duration of this project . their words of encouragement never failed to keep me going even through the hardest of times and it is here that I express my sincerest gratitude to them.

ABSTRACT

In this investigation the corrosion behavior of ductile cast iron as function of the microstructure and electrolyte solution has been conducted. The change in microstructure of the ductile cast iron is obtained by austenetising at different temperatures of 850°C, 900°C,950°C and 1000°C for 90 minutes followed by water quench. Corrosion tests included both immersion tests and electrochemical test. Corrosion rates measured from the immersion test using the weight loss method revealed that the cast iron investigated suffer less corrosion rates are not significantly affected by the microstructure of the material. Observation of the corrosion attack also showed that the type of corrosion is that of uniform instead of localized. The low corrosion rates of the ductile iron are probably the results of the high Si content in the ductile iron, which provide a thin and protective hydrate layer. This observation is reconciled with previous research which investigated high Si containing ductile cast irons.

ABSTRAK

Dalam kajian ini, ciri- ciri kakisan besi tuang mudah tempa sebagai fungsi terhadap mikrostruktur dan larutan elektrolit telah dijalankan. Perubahan mikrostruktur besi tuang mudah tempa didapati dengan proses austenising pada suhu yang berbeza iaitu 850°C, 950°C dan 1000°C untuk 90 minit, diikuti dengan lindap kejut di dalam air. Ujian kakisan termasuklah ujian rendaman dan elektrokimia. Kadar kakisan diukur melalui ujian rendaman menggunakan teknik kehilangan jisim. Ini telah menunjukkan, besi tuang mudah tempa mengalami kakisan yang sedikit apabila didedahkan kepada Sodium Hidrokside berbanding Sodium Kloride dan kadar kakisan tidak dipengaruhi secara jelas oleh mikrostruktur bahan. Pemerhatian terhadap serangan kakisan juga telah menunjukkan bahawa jenis kakisan adalah secara menyeluruh dan bukan secara tertumpu. Kadar kakisan besi tuang mudah tempa yang rendah, mungkin disebabkan oleh kandungan Silikon yang tinggi di dalam bahan, yang mana ia menghasilkan lapisan pelindung hydrate yang nipis. Secara keseluruhannya, kajian ini disokong oleh kajian sebelum ini berkenaan kandungan Silikon yang tinggi dalam besi tuang mudah tempa.

TABLE OF CONTENTS

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLE	Х
LIST OF FIGURES	xii

1 INTRODUCTION

1.1	Background of the Research	1
1.2	Problem Satement of Research	2
1.3	Objectives of the Research	3
1.4	Scopes of the Research	3

2 LITERATURE REVIEW

2.1	Genera	al Review of Cast Iron	4
2.2	Classi	fication of Cats Iron	5
	2.2.1	White Cast Irons	6
	2.2.2	Gray Cast Irons	8
	2.2.3	Malleable Cast Irons	9
	2.2.4	Nodular Cast Irons	10
	2.2.5	Compacted Graphite Cast Irons	11
2.3	Typica	ally Microstructure of Cats Iron	12
	2.3.1	Ferrite (a-Fe)	13
	2.3.2	Pearlite	13
	2.3.3	Cementite (Fe3C)	14
	2.3.4	Phosphide eutectic (melting point about 930°C)	15
	2.3.5	Martensite	15
	2.3.6	Acicular or bainitic	16
	2.3.7	Austenite	17
	2.3.8	Graphite	17
2.4	Proper	ties of Cast Iron	18
2.5	Ductil	e Cast iron	19
	2.5.1	Mechanical Properties	20
	2.5.2	Chemical Composition	21
	2.5.3	Grade of Ductile Cast Iron	21
	2.5.4	Hardness	23
	2.5.5	Tensile Properties	25
2.6	Heat T	reatment	25
	2.6.1	Austenitisation	26
	2.6.2	Cooling rate During Quenching	26
2.7	Corros	sion Of Metals	26
2.8	Elect	rochemical Reactions	27
2.9	Corros	sion of Cast Iron	29

	2.9.1.1 Effect Structure on Corrosion Resistance	30
	2.9.1.2 Effect Composition on Corrosion Resistance	30
2.10	Corrosion of Cast Iron In Nature Environment	31
	2.10.1 Atmospheric Corrosion	31
	2.10.2 Corrosion by Waters of Cast Iron	31
2.11	Soil Corrosion of Cast Iron	32
2.12	Corrosion in industrial Environment of Aast Iron	32
	2.12.1 Corrosion by Acids	32
	2.12.2 Mineral Acids	33
	2.12.3 Organic Acids	33
2.13	Corrosion by Alkalis	33
	2.13.1 Corrosion by Salt Solution Sf Cast Iron	
2.14	Corrosion Under Stress	34
2.15	Corrosion f Ttwo Types of Cast Iron	34
	2.15.1 high nickel Cast Iron	34
	2.15.1.1 Composition and Properties	35
	2.15.1.2 Aqueous Corrosion Behaviour	35
	2.15.1.3 Nature waters	35
	2.15.2 High Chromium Cast Iron	36
	2.15.2.1 Corrosion Resistance	36
	2.15.2.2 Atmopheric Corrosion	36
	2.15.2.3 Nature and Industrial Waters	37
2.16	Corrosion of Ductile Cast Iron	37
	2.16.1 Cavitation Erosion of Ductile iron	38
	2.16.2 Erosion–Corrosion of Ductile Cast Iron	39
	2.16.3 High Temperature Corrosion of Ductile Cast	40
	Irons	40
	2.16.4 Corrosion fatigue of ductile iron	41
	2.16.4.1 Fatigue Behaviour In Various Environment	42

METHODOLOGY

3.1	Introduction	43
3.2	Materials	44
3.3	Samples Preparation	44
3.4	Compositional Analysis	48
3.5	Metallography Analysis	50
3.6	Heat Treatment	51
3.7	Hardness Measurement	52
3.7	Microstructure Analysis	53
3.8	Electrochemical Testing	53
	3.8.1 Principle of Measurement	53
	3.8.2 Preparation of Working Electrode	55
3.9	Immersion Test	57

4 **RESULTS AND DISCUSSION**

Compositional Analysis 62 4.1 4.2 Microstructural Examination of As-Received Sample 63 4.3 Hardness Test 65 Immersion Test 4.4 66 Elechtrochemical (Polraisation Results) 4.5 72 4.6 Microstructure Analysis of Samples after Immersion Corrosion Test 79

43

62

CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	92
5.2	Recommendations for Future Work	93

REFERENCES

5

LIST OF TABLES

IADLE NU	TA	BL	Æ	N	0
----------	----	----	---	---	---

TITLE

2.1	Grade of Ductile Cast Iron in ASTM A- 536-77	22
2.2	Grade of Ductile Cast Iron in SAE specification No. J434c for	
	Automotive Castings	23
2.3	Typical Hardness Brinell for Ductile cast Iron	24
3.1	Potentiodynamic Polarization Test Parameters	58
3.2	Parameters for immersion test	61
4.1	Chemical composition of as-received Ductile Cast Iron	63
4.2	Analysis Hardness Rate for ductile Cast Iron	66
4.3	Corrosion rate of specimens expressed in mm/yr after 1 day in	
	(NaCl)	67
4.4	Corrosion rate of specimens expressed in mm/yr after 7days in	
	(NaCl)	68
4.5	Corrosion rate of specimens expressed in mm/yr after 14 days	
	in (NaCl)	68
4.6	Corrosion rate of specimens expressed in mm/yr after 28days	
	in (NaCl)	69
4.7	Corrosion rate of specimens expressed in mm/yr after 1	
	day in (NaOH)	70
4.8	Corrosion rate of specimens expressed in mm/yr after 7 days in	
	(NaOH)	70

4.9	Corrosion rate of specimens expressed in mm/yr after14 days	
	in (NaOH)	71
4.10	Corrosion rate of specimens expressed in mm/yr after 28 days	
	in (NaOH)	73

LIST OF FIGURES

FIGURE NO

TITLE

PAGE

2.1	Schematic of iron- iron carbide systems	6
2.2	Microstructure of white cast iron Fe3.6C0.1Si, dentrites of	
	pearlite	7
2.3	Microstructure of Gray cast iron (graphite flakes)	8
2.4	Microstructure of Malleable cast iron	9
2.5	Microstructure of spheroidal graphite cast iron as cast	
	Fe3.5C-2.5Si-0.5Mn-0.15Mo-0.31Cu-0.042Mg wt%	10
2.6	Microstructure of spheroidal graphite cast iron as cast	
	Fe3.2C-2.5Si-0.05Mg wt%	11
2.7	Flowchart for Classification of Cast Iron	12
2.8	Microstructure of cast iron under cooled graphite	13
2.9	Microstructure of cast iron consist of alternate lamellae	
	of ferrite and cimentite	14
2.10	Microstructure of cast iron consist cementite	14
2.11	Grey cast iron with a high phosphorus content	15
2.12	Microstructure of cast iron with some retained austenite	16
2.13	Acicular structure of iron of composition total carbon 2.9%	
	silicon 1.67%. magnesium 1.6	16
2.14	Microstructure of white iron matensitic	17

2.15	Microstructure consists Nodular graphite is produced in the as	
	- cast state by the joint addition of magnesium &ceramic	18
2.16	The basic corrosion cell consists of an anode, a cathode, a	
	electrolyte, and a metallic path for electron flow.	28
3.1	A flow chart showing a summary of research methodology	45
3.2	Cutting Machine (Mecotome T255/300)	46
3.3	Sample Preparation for Heat Treatment Process	47
3.4	Sample Preparation for immerssion Test	47
3.5	Grinding machine	48
3.6	Nikon optical microscope (U-LBD-2 OLYMPUS)	48
3.7	Micro balance (METTER AT 400)	49
3.9	EDX-FESEM (SUPRA 35VP)	50
3.10	Polishing machine	51
3.11	Flow chart illustrating the heat treatment processes for	
	austempered ductile iron samples	52
3.12	Furnaces for heat treatment process	53
3.13	Vickers Hardness	53
3.15	Cell kit set-up	55
3.16	Photographs of (a) Connection of specimen to copper wire by	
	brazing technique; (b) Mounting of samples	56
3.17	Photographs of (a) Working Electrode (WE); (b) Showing	
	typical surface area of sample	57
3.18	Photographs showing (a) Immersion test at room temperature;	
	(b) In oven at 25C	60
3.19	Photographs showing (a) Ultrasonic cleaning; (b) Drying	61
4.1	Microstructure of ductile cast iron consiste martensite (850C)	64
4.2	Microstructure of ductile cast iron consiste of martensite(900)	65
4.3	Microstructure of ductile cast iron consiste of martensite (not	
	fully resolved)(950)	65
4.4	Microstructure of ductile cast iron consiste of plate	
	martensite(1000)	65

4.5	Hardness Rate for ductile Cast Iron specimens	66
4.6	Chart showing corrosion rate in NaCl solution	69
4.7	Chart showing corrosion rate in NaOH solution	72
4.8	Bar chart of icorr in 3.5% NaCl at 24±2°C	74
4.9	chart of icorr in 3.5% NaCl at 850°C	74
4.10	chart of icorr in 3.5% NaCl at 900°C	75
4.11	chart of icorr in 3.5% NaCl at 950°C	75
4.12	chart of icorr in 3.5% NaCl at 1000°C	76
4.13	Bar chart of icorr in 10% NaOH at 24±2°C	78
4.14	chart of icorr in 10% NaOH at 850°C	78
4.15	chart of icorr in 10% NaOH at 900°C	79
4.16	chart of icorr in 10% NaOH at 950°C	79
4.17	chart of icorr in 10% NaOH at 1000°C	80
4.18	Optical micrographs of specimens at 850 in 3.5% NaCl +	
	10% NaOH 850°C	81
4.19	Optical micrographs of specimens at 900°C in3.5% NaCl +	
	10% NaOH at 24°C	82
4.20	Optical micrographs of specimens at 950 °C in3.5% NaCl +	
	10% NaOH at 24°C	83
4.21	Optical micrographs of specimens at 1000°C in3.5% NaCl +	
	10% NaOH at 24°C	84
4.22	Optical micrographs of specimens at 850 °C in3.5% NaCl +	
	10% NaOH at 24°C	86
4.23	Optical micrographs of specimens at 900°C in3.5% NaCl +	
	10% NaOH at 24°C	87
4.24	Optical micrographs of specimens at 950°C in3.5% NaCl +	
	10% NaOH at 24°C	88
4.25	Optical micrographs of specimens at 1000°C in3.5% NaCl +	
	10% NaOH at 24°C	89
4.26	Optical micrographs of specimens at 850 °C in3.5% NaCl +	
	10% NaOH at 24°C	90

4.27	Optical micrographs of specimens at 900°C in3.5% NaCl +	
	10% NaOH at 24°C	91
4.28	Optical micrographs of specimens at 950 °C in 3.5% NaCl +	
	10% NaOH at 24°C	92
4 20	Optical micro graphs of grapping at 050°C in 2.50/ NoCl 1	
4.29	Optical micrographs of specimens at 950°C in 3.5% NaCI+	
	10% NaOH at 24°C	93

CHAPTER 1

Introduction

1.1 General Review of the Research

Ductile iron also known as nodular cast iron or spheroid-graphite (SG) cast iron contains nodules of graphite, embedded in a matrix of ferrite or pearlite or both, the graphite separates out as nodules from iron `during solidification because of the additives like `cerium (Ce) and magnesium (Mg) introduced into the molten iron before casting. These nodules act as crack arresters, thereby improving the mechanical properties of ductile iron.

The formation of graphite nodules during solidification causes an internal expansion of ductile iron as it solidifies, and is responsible for the absence of shrinkage defects in most ductile iron castings. The major difference in the structure of ductile and grey iron is the flaky and spheroid graphite in the grey and ductile iron respectively. However, the spheroid graphite in ductile iron does not weaken the matrix and hence its mechanical properties are superior to those of grey iron and comparable to that of steel [1].

The corrosion resistance of ductile cast iron is attributed to the formation of a thin passive barrier film of hydrated oxides of silicon on the metal surface. The film develops with time due to the dissolution of iron from the metal matrix leaving behind silicon which hydrates due to the presence of moisture. The passive hydrated silicon film is thought to bridge over and form an impervious barrier layer on a fine grained high silicon cast iron with spheroidal graphite areas much more readily than on a high silicon cast iron with coarse graphite flakes.

While a lot is known on the effect of alloyed elements on the mechanical properties of ductile cast iron, not much is known of the effect of microstructure, and the corrosion behavior of these materials, in natural and acidic environments. Hence the need to investigate the effect of heat treatment on the microstructure and corrosion resistance of as-cast ductile iron, in Sodium Chloride and Sodium Hydroxide solutions.[1,2]

1.2 Problem Statement of the Research

While much is known about the effect of alloying elements on the mechanical properties of cast irons, little is probably known about their corrosion resistance. The corrosion resistance of (DCI) is related to its microstructure which is determined by heat treatment parameters (austenitising temperature and austenitising time)

Thus, the aim of this research is to assess the relationship between the heat treatment, corrosion behavior and microstructure of ductile cast iron.

1.3 Objective of the Research

To investigate the influence of heat treatment process on the microstructure and corrosion behavior of Ductile Cast Iron in neutral and acidic environments.

1.4 Scope of project of the Research

The scope of this project is as follows:

- (a) Heat treatment of ductile cast iron which includes:
 - (i) Austenitization
 - (ii) Quenching
- (b) Corrosion test measurement by:
 - (i) Immersion test (ASTM G67)
 - (ii) Electrochemical test (ASTM G5)
- (c) Corrosion performance and analysis of samples