ANALYSIS OF DIOXIN AND FURAN RELATED COMPOUNDS AND ORGANOPHOSPHOROUS PESTICDES USING MICELLAR ELECTROKINETIC CHROMATOGRAPHY

SHARAIN LIEW YEN LING

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > DECEMBER 2007

Dedicated to my beloved father, mother and brother and people who have supported me throughout this research.

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my main project supervisor, Associate Professor Dr. Wan Aini Wan Ibrahim for her encouragement, guidance and support throughout this research project. I am also very thankful to my co-supervisor Professor Dr. Mohd. Marsin Sanagi for his guidance, advice and motivation. This research would not have been carried out if not for their support and guidance.

I am also indebted to the Ministry of Science, Technology and Innovation and Universiti Teknologi Malaysia for funding my Masters by research through Vote 75149.

I would also like to thank my fellow labmates for their support and encouragement in completing this project. My sincere appreciation to my friends and family members who have encouraged me in completing this project and for their support.

ABSTRACT

Micellar electrokinetic chromatography (MEKC) is increasingly popular in the analysis of organic pollutants in the environment due to its high separation efficiency, less solvent usage and shorter analysis time. In this study, MEKC was used for the separation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,7,8tetrachlorodibenzo-p-furan (TCDF) with a separation buffer consisting of 20 mM sodium cholate, 20 mM sodium tetraborate decahydrate and 5% v/v organic modifier acetonitrile-methanol (3:1 v/v) at a final buffering pH of 9.16-9.22. Separation voltage was at 25 kV with anodic injection and optimum wavelength set at 225 nm. To improve the limit of detection (LOD), five on-line preconcentration techniques were evaluated. The techniques were normal stacking mode (NSM-MEKC), reversed electrode polarity stacking mode (REPSM-MEKC), high conductivity sample stacking mode (HCSSM-MEKC), sweeping and field enhanced sample injection (FESI-MEKC). High conductivity sample stacking method-MEKC (HCSSM-MEKC) that gave an LOD of 46 ppb for TCDF and 18.5 ppb for TCDD was chosen. Solid phase disc extraction (SPDE) was used to further improve the LOD during the extraction of TCDF and TCDD from water thus reducing the LODs by 1000 fold. LODs in the ppt range were achieved for both analytes. This is the first study conducted using MEKC for 2,3,7,8-TCDF and 2,3,7,8-TCDD. Selected hydrophilic organophosphorous pesticides were also included in this study. They were dicrotophos, monocrotophos and phosphamidon. Separations were carried out using acidic buffer (pH 2.3) with a buffering system consisting of 10 mM sodium dodecyl sulphate, 20 mM sodium dihydrogen phosphate and 10% v/v methanol. Optimum detection wavelength of 225 nm with separation voltage at -25 kV was used. MEKC separation gave LODs of 32.1 ppm for dicrotophos, 3.75 ppm for monocrotophos and 18.6 ppm for phosphamidon. Stacking with reverse migrating micelles (SRMM) gave better LODs of 0.15 ppm for dicrotophos, 0.39 ppm for monocrotophos and 0.22 ppm for phosphamidon. SPDE was able to reduce the LOD further by 250 fold. Sample matrix used was spiked pond water. MEKC was successfully used to separate the test analytes in pond water sample. These analytes consisted of 2,3,7,8-TCDF and 2,3,7,8-TCDD under basic conditions and three hydrophilic organophosphorous pesticides under acidic conditions with analysis time of less than 10 minutes.

ABSTRAK

Kromatografi rerambut elektrokinetik misel (MEKC) semakin kerap digunakan dalam analisis bahan pencemar alam sekitar kerana kecekapan pemisahan yang tinggi, penggunaan isipadu pelarut yang kecil dan masa analisis yang singkat. Dalam kajian ini, MEKC telah digunakan untuk memisahkan 2,3,7,8tetraklorodibenzo-p-dioksin (TCDD) dan 2,3,7,8-tetraklorodibenzo-p-furan (TCDF) dengan menggunakan larutan penimbal 20 mM natrium kolat, 20 mM natrium tetraborat dekahidrat dan campuran pengubahsuai organik 5% asetonitrile-methanol (3:1 v/v) dengan pH 9.16-9.22. Voltan pemisahan adalah 25 kV dan panjang gelombang optimum pada 225 nm. Lima teknik pra-pemekatan talian terus iaitu mod penyusunan normal (NSM-MEKC), penyusunan kekutuban elektrod berbalik (REPSM-MEKC), mod penyusunan sampel kekonduksian tinggi (HCSSM-MEKC), sapuan (S-MEKC) dan suntikan sampel peningkatan medan (FESI-MEKC) telah diuji untuk membaiki had pengesanan analit. Mod penyusunan sampel kekonduksian tinggi (HCSSM-MEKC) telah dipilih dengan had pengesanan 46 ppb untuk TCDF dan 18.5 ppb untuk TCDD. Kaedah pengekstrakan cakera fasa pepejal (SPDE) telah digunakan untuk memperbaiki had pengesanan TCDF dan TCDD dalam sampel air dan berjaya menurunkan had pengesanan sebanyak 1000 kali ganda. Had pengesanan adalah dalam julat ganda bahagian per trillion (ppt). Ini adalah kajian pertama dilakukan dengan MEKC terhadap kedua-dua analit. Beberapa pestisid organofosforus hidrofilik turut dipilih dalam kajian ini iaitu dikrotofos, monokrotofos dan fosfamidon. Pemisahan dilakukan dalam penimbal berasid (pH 2.3) dengan larutan pemisahan yang mengandungi 10 mM natrium dodesil sulfat (SDS), 20 mM natrium dihidrogen fosfat dan 10% methanol. Panjang gelombang optimum 225 nm dan voltan pemisahan -25 kV. Pemisahan MEKC memberi had pengesanan sebanyak 32.1 ppm untuk dickrotofos, 3.75 ppm bagi monokrotofos dan 18.6 ppm dan fosfamidon. Mod penyusunan dengan misel penghijrahan berbalik (SRMM) memberikan had pengesanan yang lebih baik iaitu sebanyak 0.15 ppm untuk dikrotofos, 0.39 ppm bagi monokrotofos dan 0.22 ppm bagi fosfamidon. SPDE telah berjaya menurunkan lagi had pengesanan sebanyak 250 kali ganda. Sampel matriks yang digunakan ialah air tasik terpaku. MEKC telah berjaya digunakan untuk memisahkan analit-analit dalam sampel air tasik. Analit-analit ini terdiri daripada 2,3,7,8-TCDF dan 2,3,7,8-TCDD dalam keadaan berbes dan tiga jenis pestisid organofosforus hidrofilik dalam keadaan berasid dengan masa analisis kurang daripada 10 minit.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	xvii
	LIST OF SYMBOLS	xxvi
	LIST OF ABBREVIATIONS	xxvii

1	SUMMARY OF THESIS	
1.1	Background	1
1.2	Summary of thesis	2

2	INTRODUCTION	5
2.1	Organic Pollutants	5
2.2	Chlorinated Dioxins and Dibenzofurans	6
2.2.1	Physical and Chemical Properties Of 2,3,7,8-TCDF	7
	and 2,3,7,8-TCDD	

2.2.2	Toxicity of PCDDs and PCDFs	8
2.2.3	Potential Routes of PCDDs and PCDFs Exposure In	9
	Wildlife and Humans	
2.2.3.1	Commercial and Technical Products	9
2.2.3.2	Municipal Incinerators and Hazardous Waste Incinerators	10
2.2.3.3	Food Products	10
2.3	Organophosphorous Pesticides	11
2.3.1	Physical and Chemical Properties	12
2.3.2	Toxicity of OPPs	14
2.4	Sample Extraction and Clean-up Strategies of Organic	14
	Pollutants	
2.4.1	Methods For The Extraction Organic Pollutants	15
2.4.2	Clean-up Procedures for Organic Pollutants	17
2.5	Identification and Quantification of Organic Pollutants	19
2.5.1	Gas Chromatography	19
2.5.2	Micellar Electrokinetic Chromatography (MEKC)	20
2.5.3	Types of Surfactants	21
2.5.4	Organic Modifier Effect	25
2.5.5	Matrix Effect	26
2.6	On-line Preconcentration Techniques	27
2.6.1	Stacking	28
2.6.2	Sweeping	34
2.7	Problem Statement	35
2.8	Research Objectives	37
2.9	Scope of Work	38
3	EXPERIMENTAL	41
3.1	Introduction	41
3.2	Reagents	41
3.3	Instrumentations	42
3.4	Conditioning of the Capillary	43
3.5	Procedures for MEKC Separation of TCDF and TCDD	44

3.5.1	Preliminary Investigation For The Separation of TCDF and	44
	TCDD	
3.5.2	Evaluation Of Organic Modifier Effect On The Separation	45
	of TCDF and TCDD	
3.5.3	Separation Efficiency of TCDF and TCDD Under Different	45
	Sample Matrix	
3.5.4	Normal Stacking Mode (NSM-MEKC) In The Separation	46
	Of TCDF and TCDD	
3.5.5	Reversed Electrode Polarity Stacking Mode	47
3.5.6	High Conductivity Sample Stacking Mode (HCSSM)	47
3.5.7	Sweeping	47
3.5.8	Field-Enhanced Sample Injection (FESI-MEKC)	48
3.6	Off-line Preconcentration Using Solid Phase Disc	48
	Extraction (SPDE)	
3.6.1	Sample Preparation	48
3.6.2	Solid Phase Disc Extraction	49
3.7	Summary of Methodology of Optimization of eparation of	51
	TCDD and TCDF	
3.8	Procedures for MEKC Separation Of Hydrophilic	52
	Organophosphorous Pesticides (OPPs)	
3.8.1	Wavelength Optimization In The Separation Of OPPs	52
	Under Acidic Conditions	
3.8.2	Stacking With Reverse Migrating Micelles (SRMM) In The	53
	Analysis Of OPPs	
3.9	Off-line Concentration Using Solid Phase Disc	53
	Extraction (SPDE) Of OPPs	
3.9.1	Sample Preparation	53
3.9.2	Extraction	53
3.9.3	Method Validation Of Extraction Process	54
4	OPTIMIZATION OF SEPARATION PARAMETERS	55
4.1	Introduction	55

4.2	Preliminary Investigation On The Separation of TCDF and	55
	TCDD Using MEKC	
4.2.1	Confirmation of Individual Peaks	56
4.2.2	Optimization of Analyte Separation By Varying The	57
	Percentage Of Acetontrile In The Running Buffer Solution	
4.3	Evaluation of Organic Modifier Effect On The Separation	62
	Efficiency of TCDF and TCDD Using MEKC	
4.3.1	Comparison of Separation Performance Between	63
	Acetonitrile and Methanol	
4.3.2	Comparison Of Mixed Modifier With Single Organic	68
	Modifier On Separation Performance	
4.4	Investigation of Sample Matrix Effect On The Separation	74
	Efficiency of TCDF and TCDD	
4.4.1	Baseline Stability and Unknown Peak Elimination	74
4.4.2	Comparison Of Peak Area, Peak Height	77
	And Separation Efficiency In Different Matrix	

5	OFF-LINE AND ON-LINE PRECONCENTRATION	80
	TECHNIQUES	
5.1	Introduction	80
5.2	Normal Mode (NM-MEKC) In Analysis of TCDF and	80
	TCDD	
5.2.1	Normal Mode MEKC (NM-MEKC)	80
5.2.2	Calibration Lines, Linearity (r ²), LODs	81
5.2.3	Repeatability and Efficiency (N)	82
5.3	Normal Stacking Mode (NSM-MEKC)	84
5.3.1	Optimization of Injection Time	85
5.3.2	Calibration Lines, Linearity (r ²), LODs	88
5.3.3	Repeatability, Reproducibility and Efficiency (N)	89
5.3.4	Stacking Efficiency	92
5.4	Reversed Electrode Polarity Stacking Mode (REPSM)	93

5.4.1	Influence Of Various Stacking Periods	93
5.4.2	Calibration lines, linearity (r ²) and LODs	97
5.4.3	Repeatability and Efficiency	98
5.4.4	Stacking Efficiency	99
5.5	High Conductivity Sample Stacking Mode	99
	(HCSSM-MEKC)	
5.5.1	Optimization of Sodium Chloride Concentration	100
5.5.2	Calibration lines, linearity (r ²) and LODs	103
5.5.3	Repeatability, Reproducibility and Efficiency	104
5.5.4	Stacking Efficiency	105
5.6	Sweeping	106
5.7	Field-Enhanced Sample Injection (FESI)	107
5.8	Off-line Preconcentration Technique With Solid Phase Disc	109
	Extraction (SPDE)	
5.9	Conclusions	113
6	SEPARATION OF HYDROPHILIC	114
	ORGANOPHOSPHOROUS PESTICIDES USING	
	MICELLAR ELECTROKINETIC CHROMATOGRAPHY	
	(MEKC) WITH ACIDIC BUFFER	
6.1	Introduction	114
6.2	Reverse Mode Micellar Electrokinetic Chromatography	115
6.2.1	Wavelength Optimization	115
6.2.2	Calibration Lines, Linearity (r ²), LODs	118
6.2.3	Repeatabilities and Efficiency (N)	119
6.3	Stacking With Reverse Migrating Micelles	121
6.3.1	Calibration Lines, Linearity (r^2) , LODs	122
6.3.2	Repeatability and Efficiency (N)	124
6.3.3	Stacking Efficiencies (SEF)	125

6.4	Off-line Preconcentration Technique With Solid Phase	127
	Disc Extraction (SPDE)	
7	CONCLUSIONS	130
7.1	Conclusions	130
7.2	Future Direction	134
	REFERENCES	135
	APPENDIX	152
	List of Publications	152
	List of Presentations	153

xii

LIST OF TABLES

TABLE NO.	TITLE	PAGE	
2.1	Physical and chemical properties of 2,3,7,8-TCDF and 2,3,7,8-		
	TCDD.		
2.2	Toxicity Equivalent Factors (TEF) for chlorinated	8	
	dibenzodioxins and chlorinated dibenzofurans		
2.3	Functions and physical properties of the three hydrophilic OPPs	12	
2.4	Example of various sorbents used in SPE for the analysis of	18	
	polychlorinated dibenzodioxins, polychlorinated dibenzofurans,		
	polychlorinated biphenyls (PCBs) and organophosphorous		
	pesticides (OPPs) from various matrices.		
2.5	Some examples of GC analysis used for PCDD/Fs	22	
2.6	Some examples of GC analysis used for OPPs	23	
2.7	Some examples of determination of organic pollutants using	24	
	MEKC.		
4.1	Repeatability of migration time, peak areas and peak height for	61	
	TCDF and TCDD under different fractions of acetonitrile in		
	running buffer. Separation conditions remain the same as in		
	Figure 4.1.		
4.2	A comparison on the effect of different fractions of MeCN on	62	
	the peak resolution, R _s for TCDF measured relative to peak X.		
4.3	A comparison on the effect of different fractions of MeOH on	63	
	the peak resolution, Rs for TCDF measured relative to peak X.		
4.4	A comparison of the effect of 15 % v/v MeCN and 15 % v/v	65	
	MeOH on the migration time (t_m) , resolution (R_s) , efficiency		
	(N) and selectivity (α) of TCDF and TCDD MEKC separation.		

4.5	Repeatability of migration time, peak area and peak height for	66
	TCDF and TCDD under different fractions of methanol, MeOH	
	in running buffer. Separation conditions the same as in Figure	
	4.1.	
4.6	The effect of different organic modifiers on the relative	73
	standard deviation (% RSD) of migration time, peak area and	
	peak height for TCDF and TCDD.	
5.1	Equation of calibration curves, correlation coefficients, r^2 ,	82
	LODs (at $S/N = 3$) on the basis of calibration curves in Figure	
	5.1.	
5.2	Repeatability of migration time, peak area and peak height	82
	(mAU) in the separation of TCDF and TCDD using NM-	
	MEKC.	
5.3	Injection volume and plug length as a function of pressure, time	86
	and capillary id. % of sample plug and corresponding % of	
	remaining length available for separation is also indicated.	
5.4	Equation of calibration curves, r^2 , LODs (for S/N = 3)	89
	on the basis of calibration curves in Figure 5.6.	
5.5	Repeatability of migration time, peak height and peak area for	90
	TCDF and TCDD using NSM.	
5.6	Reproducibility of migration time (min), peak area (mAUs) and	91
	peak height (mAU) for TCDF and TCDD.	
5.7	Sensitivity Enhancements Factor (SEF) in NSM-MEKC over	92
	NM-MEKC in the separation of TCDF and TCDD.	
5.8	Corresponding percentage of original current, % with polarity	95
	switching time, s used in REPSM.	
5.9	Equation of calibration curves, r^2 , LODs (for S/N = 3) on the	97
	basis of calibration curves in Figure 5.11 using REPSM.	
5.10	Repeatability of migration time, peak area and peak height in	98
	the separation of TCDF and TCDD using REPSM.	
5.11	Sensitivity Enhancement Factors (SEF) in REPSM over NM-	99
	MEKC in the separation of TCDF and TCDD.	

xiv

5.12	Equation of calibration curves, r^2 , LODs (at S/N = 3) for TCDF	103
	and TCDD based on calibration curves in Figure 5.15.	
5.13	Repeatability of migration time (min), peak area (mAUs) and	104
	peak height (mAU) in the separation of TCDF and TCDD.	
5.14	Reproducibility over four consecutive days with n=5 per day of	104
	migration time (min), peak area (mAUs) and peak height	
	(mAU) in the separation of TCDF and TCDD using HCSSM.	
	TCDF is at 2 ppm while TCDD is at 0.3 ppm.	
5.15	Sensitivity Enhancements Factor (SEF) in HCSSM-MEKC	106
	over NM-MEKC in the separation of TCDF and TCDD.	
5.16	Recovery and repeatability of extraction of TCDF and TCDD	110
	from spiked water using SPDE.	
5.17	Concentration of TCDF and TCDD discovered in pulp-mill	111
	treated and untreated effluent. ND: Not detected.	
6.1	Summary of wavelength optimization for dicrotophos,	116
	monocrotophos and phosphamidon. Separation conditions:	
	separation buffer contained 20 mM phosphate (pH 2.3), 10 mM	
	SDS and 10% v/v methanol; samples at 100 ppm each prepared	
	in methanol; applied potential -25kV; hydrodynamic sample	
	injection for 10 s at 50 mbar. Total capillary length: 48.5 cm.	
	Effective length: 40 cm.	
6.2	Regression equation, r^2 , LODs (S/N = 3) on the basis of	119
	calibration curves in Figure 6.4.	
6.3	Intraday % RSD of migration time (min), peak area (mAUs)	120
	and peak height (mAU) in the separation of dicrotophos,	
	monocrotophos and phosphamidon at three replicates each at	
	100 ppm.	
6.4	Regression equation, r^2 , LODs (for S/N = 3) using SRMM-	123
	MEKC based on calibration curves in Figure 6.8.	

6.5	Repeatability of migration time (min), peak area (mAUs) and	125	
	peak height (mAU) in the separation of dicrotophos,		
	monocrotophos and phosphamidon at three replicates each at		
	10 ppm.		
6.6	Sensitivity Enhancement Factors in SRMM-MEKC over RM-	126	
	MEKC in the separation of dicrotophos, monocrotophos and		
	phosphamidon. Conditions as in Figure 6.10.		
6.7	Recovery and repeatability of extraction.	128	
7.1	LODs (for $S/N = 3$) obtained using the three online	131	
	preconcentration techniques as compared to normal mode (NM)		
	for TCDF and TCDD.		
7.2	Repeatabilities for migration time, peak area and peak height	132	
	for both analytes using the three online preconcentration		
	techniques as compared to normal mode (NM) for TCDF and		
	TCDD. Sweeping and FESI were not successful in enhancing		
	the detection of both analytes.		

xvi

LIST OF FIGURES

FIGURE NO.	TITLE			
2.1	General structures of A) polychlorinated dibenzo-p-dioxins,			
	PCDDs and B) polychlorinated dibenzofurans, PCDFs.			
2.2	General structure of organophosphorous pesticides.	12		
2.3	The chemical structures of (A) phosphamidon, (B)	13		
	dicrotophos and (C) monocrotophos.			
2.4	Schematic diagram of the principle of sample stacking in	29		
	MEKC. SB is the stacking boundary. EOF is the			
	electrooosmotic flow. (Quirino and Terabe, 1997a).			
2.5	Schematic diagram of stacking of analytes during REPSM.	31		
	(A) Before stacking; (B) micelles enter the capillary and			
	carry with it neutral analytes a, k(ax)>k(ay)>k(az); (C)			
	micelles and neutral analytes stack at the concentration			
	boundary (B2) and (B1) and polarity is switched later to			
	positive; (D) separation and later detection of zones.			
	Retention factor is referred with the symbol k. ax, ay and az			
	refer to the stacking boundary for analyte x, analyte y and			
	analyte z.(Quirino and Terabe, 1997b).			

2.6	Schematic diagram of stacking of neutral analytes in	33
	FESI-MEKC. (A) initial situation (water plug, unshaded;	
	BGS shaded); (B) micelles enter the capillary and carry	
	with them neutral analytes emanating from the cathodic	
	vial, $k(x) > k(y) > k(z)$; (C) micelles and neutral analytes	
	stacked at the concentration boundary, voltage is cut and	
	sample vial replaced with BGS vial when the measured	
	current is approximately 97-99% of the predetermined	
	current, voltage is then applied at positivie polarity; (D)	
	separation of zones occur. k refers to the retention factor of	
	analyte x, y and z	
	(Quirino and Terabe, 1998b).	
2.7	Schematic diagram of sweeping of analytes in MEKC under	35
	low electroosmotic flow. (a) Starting situation, injection of	
	S prepared in a matrix having a conductivity similar to that	
	of the BGS; (b) application of voltage at negative polarity,	
	micelles emanating from the cathodic side sweeping analyte	
	molecules; (c) the injected analyte zone is assumed	
	completely swept (Shao and Tseng, 2005).	
2.8	Flow chart of research methodology of separation TCDD	39
	and TCDF.	
2.9	Flow chart of research methodology of separation of the	40
	three hydrophilic OPPs viz. phosphamidon, dicrotophos and	
	monocrotophos.	
3.1	Chemical structure for TCDF and TCDD.	42
3.2	SPE disc extraction setup in the extraction of analytes from	50
	water samples.	
3.3	Summary of the methodology of MEKC separation	51
	involved in the separation of TCDF and TCDD.	

4.1	Electropherogram of TCDD and TCDF at 40 ppm each in	56	
	1,4-dioxane. Run buffer: 20 mM di-sodium tetraborate		
	decahydrate, 20 mM sodium cholate and 5% (v/v)		
	acetonitrile at a final running buffer pH: 9.16-9.22. Injection		
	time: 1 s at 50 mbar. Wavelength: 225 nm. Separation		
	voltage: 25 kV. Total capillary length: 48.5 cm, effective		
	length: 40 cm.		
4.2	The effect of acetonitrile percentage on the migration	57	
	window for the MEKC separation of TCDF and TCDD		
	(n=3).		
4.3	Electropherogram of TCDF with different percentages of	58	
	acetonitrile (MeCN) in BGS at 0 % v/v, % v/v, 10 % v/v, 15		
	% v/v and 20 % v/v. At 20 % v/v, the TCDF peak appeared		
	before peak X. Separation conditions are the same as in		
	Figure 4.1.		
4.4	Effect of acetonitrile fraction on migration time of TCDF		
	and TCDD at 0% v/v MeCN, 5% v/v MeCN, 10% v/v		
	MeCN, 15% v/v MeCN and 20% v/v MeCN. Separation		
	conditions remain the same as in Figure 4.1.		
4.5	Effect of different percentages of acetonitrile in running	60	
	buffer on (A) migration time and (B) efficiency on the		
	separation of -TCDF and TCDD.		
4.6	Electropherogram of TCDF and peak X at 15% v/v $$	64	
	methanol. Running buffer conditions: 20 mM sodium		
	cholate, 20 mM sodium tetraborate-decahydrate at a final		
	buffer pH: 9.16-9.22. Wavelength: 225 nm. Both test		
	analytes at 100 ppm each in 1,4-dioxane. Hydrodynamic		
	injection at 50 mbar for 1s. Separation voltage, 25 kV;		
	temperature, 25°C; total capillary length, 48.5 cm; effective		
	length, 40 cm.		

4.7	Peak shouldering for TCDD at 9.147 min (circle) at 20%	64
	v/v methanol. MEKC conditions as in Figure 4.5.	
4.8	Electropherogram of the effect of the % of MeOH on the	67
	separation of TCDF and TCDD. Separation conditions	
	remain the same as in Figure 4.5. The peaks between TCDF	
	and TCDD are suspected to be from the 1,4-dioxane.	
4.9	Peak resolution for TCDF (measured relative to peak X	67
	mentioned in section 4.2.2) at 15% v/v MeCN, 15% v/v	
	MeOH and various percentages of mixed modifier.	
	Separation conditions similar to Figure 4.1.	
4.10	Effect of (A) 15% v/v MeCN (B) 15% v/v MeOH (C) 5%	69
	v/v MeCN-MeOH (1:1), (D) 5% v/v MeCN-MeOH (3:1)	
	and (E) 5% v/v MeCN-MeOH (1:3) on the separation of	
	TCDD. MEKC separation conditions remain	
	identical as in Figure 4.1.	
4.11	Effect of (A) 15% v/v MeCN (B) 15% v/v MeOH (C) 5%	70
	v/v MeCN-MeOH (1:1), (D) 5% v/v MeCN-MeOH (3:1)	
	and (E) 5% v/v MeCN-MeOH (1:3) on the separation	
	efficiency of TCDF (enlarged). Peak X refers to an	
	unknown peak due to the 1,4-dioxane used. MEKC	
	separation conditions similar to Figure 4.10.	
4.12	Effect of modifier on (A) migration time, (B) peak area, (C)	72
	peak heights and (D) efficiency of TCDF and TCDD.	
4.13	Electropherograms of TCDF and TCDD at 4 ppm each in	75
	different media used. (A) ethanol, (B) water and (C) buffer.	
	(B) and (C) are analytes dissolved in aqueous matrix while	
	(A) is analyte dissolved in non-aqueous matrix. Running	
	buffer conditions as in Figure 4.5 but with 5% v/v MeCN-	
	MeOH (3:1).	

XX

4.14	Electropherogram of TCDF in the presence of (A) ethanol,	76		
	(B) water and (C) buffer matrix. TCDF: 4 ppm; running			
	buffer conditions similar to Fig 4.13.			
4.15	Comparison of sample matrix effect based on (A) separation	78		
	efficiency, (B) peak area and (D) peak height. (C) shows the			
	enlarged peak areas as circled in (B) for TCDF. Error bars			
	are in standard errors.			
5.1	Calibration curves based on peak height for (A) TCDF and	81		
	(B) TCDD using NM-MEKC. Separation buffer: 20 mM			
	sodium cholate, 20 mM sodium tetraborate-decahydrate and			
	5% v/v MeCN/MeOH (3:1) at a final buffer pH 9.16-9.22.			
	Separation wavelength: 225 nm. Separation voltage: 25 kV.			
	Hydrodynamicinjection for 1s at 50 mbar. Capillary total			
	length: 48.5 cm. Effective length: 40 cm.			
5.2	Electropherogram of three replicated runs for the separation	83		
	of TCDF (40 ppm) and TCDD (15 ppm) in NM-MEKC			
	under the same conditions as in Figure 5.1.			
5.3	Variations in N for (A) TCDF and (B) TCDD in the	84		
	concentration used in the calibration curve in NM-MEKC.			
5.4	Electropherograms showing the effect of different injection	87		
	times on peak shapes of TCDD and TCDF. Separation			
	buffer: 20 mM sodium cholate, 20 mM sodium tetraborate-			
	decahydrate and 5% v/v MeCN-MeOH (3:1) at a final			
	buffer pH 9.16-9.22. Separation wavelength, 225 nm;			
	separation voltage, 25 kV; hydrodynamic injection of			
	samples varied from 1 s, 4 s, 10 s, 20 s, 30 s, 40 s and 50 s.			
	Capillary total length: 48.5 cm; effective length: 40 cm.			

5.5	Influence of injection time on (A1) peak area, (A2) enlarged	88	
	for TCDF peak area, (B) peak height and (C) efficiency on		
	the separation of TCDF and TCDD. Hydrodynamic		
	injection pressure constant at 50 mbar.		
5.6	Calibration curves based on peak height for (A) TCDF and	89	
	(B) TCDD using NSM-MEKC.Injection time at 50 mbar for		
	10 s. Separation conditions remain similar to Figure 5.4.		
5.7	Electropherogram of three successive replicated runs for the	90	
	separation of TCDF and TCDD in NSM-MEKC under same		
	conditions as in Figure 5.4 but with an injection time of 10		
	S.		
5.8	Variations in N in the concentration range for (A) TCDF	92	
	and (B) TCDD used in the calibration curve in NSM-		
	MEKC.		
5.9	Effect of polarity switching time on (A1) peak area and	94	
	(B1) peak height for both analytes. (A2) enlarged line graph		
	of peak area for TCDF. (B2) enlarged line graph of peak		
	height for TCDF.		
5.10	Electropherogram of REPSM with different polarity	96	
	switching times. TCDF at 4 ppm (circled peak) while		
	TCDD at 1.5 ppm. Separation buffer: 20 mM sodium		
	cholate, 20 mM sodium tetraborate-decahydrate and 5% v/v $$		
	MeCN/MeOH (3:1) at a final buffer pH 9.16-9.22.		
	Separation wavelength, 225 nm; separation voltage, 25 kV.		
	Hydrodynamic injection of sample at 50 mbar for 100 s		
	followed by electrokinetic injection of buffers at -25 kV for		
	20 s. Total capillary length: 48.5 cm. Effective length: 40.0		
	cm.		
5.11	Calibration curves based on peak height for (a) TCDF and	97	
	(b) TCDD using REPSM. Injection time set at 50 mbar for		
	100 s. Electrokinetic injection at -25 kV for 20 s. Separation		
	conditions similar to Figure 5.10.		

5.12	Variations in N with the concentration for (A) TCDF and	98
	(B) TCDD used in the calibration curve in REPSM-MEKC.	
	Conditions remain the same as in Figure 5.10.	
5.13	Effect of different concentrations of NaCl (0-300 mM) on	101
	(A) peak area, (B) peak height and (C) efficiency for both	
	TCDF and TCDF. Separation buffer: 20 mM sodium	
	cholate, 20 mM sodium tetraborate-decahydrate and 5% v/v	
	(3:1 acetonitrile-methanol) at a final buffer pH 9.16-9.22.	
	Separation wavelength: 225 nm. Separation voltage: 25 kV.	
	Hydrodynamic injection of sample at 50 mbar for 10 s.	
	Total capillary length: 48.5 cm. Effective capillary length:	
	40 cm.	
5.14	HCSSM-MEKC electropherograms with different	102
	concentration of NaCl. TCDF at 2 ppm while TCDD at 0.3	
	ppm. Peak for TCDF is shown by the circle drawn around	
	the peak. Separation buffer: 20 mM sodium cholate, 20	
	mM sodium tetraborate-decahydrate and 5% v/v MeCN-	
	MeOH (3:1) at a final buffer pH 9.16-9.22. Separation	
	wavelength: 225 nm. Separation voltage: 25 kV.	
	Hydrodynamic injection of sample at 50 mbar for 10 s.	
	Total capillary length: 48.5 cm. Effective capillary length:	
	40 cm.	
5.15	Calibration curves based on peak height for (a) TCDF and	103
	(b) TCDD using HCSSM. Injection time set at 50 mbar for	
	10 s. NaCl concentration in sample matrix at 200 mM.	
	Separation conditions similar to Figure 5.14.	
5.16	Variations in efficiency, N in the concentration range for	105
	(A) TCDF and (B) TCDD used in the calibration curve in	
	HCSSM-MEKC. Separation conditions similar to Figure	
	5.14.	

5.17	Electropherogram of sweeping with different concentration	
	of sodium cholate in sample matrix at (A) 5 mM, (B) 10	
	mM and (C) 20 mM. Separation buffer: 20 mM sodium	
	cholate, 20 mM sodium tetraborate-decahydrate and 5% v/v	
	MeCN-MeOH (3:1) at a final buffer pH 9.16-9.22.	
	Separation wavelength, 225 nm; separation voltage, 25 kV.	
	Hydrodynamic injection of sample at 50 mbar for 5 s. Total	
	capillary length: 48.5 cm. Effective length: 40.0 cm. TCDF	
	at 2 ppm while TCDD at 0.5 ppm.	
5.18	Electropherogram of TCDF (2ppm) and TCDD (0.5 ppm)	108
	under FESI-MEKC conditions. Analytes were mixed with	
	20 mM sodium cholate and deionized water. Samples were	
	electrokinetically injected at -20 kV, 100 s after	
	hydrodynamic injection of water plug for 5 s at 50 mbar.	
	Separation conditions remain the same as in Figure 5.18.	
5.19	Electropherograms of SPDE-HCSSM of TCDF and TCDD	111
	spiked with 50 ng. Separation buffer: 20 mM sodium	

Electropherograms of SPDE-HCSSM of TCDF and TCDD 11
spiked with 50 ng. Separation buffer: 20 mM sodium
cholate, 20 mM sodium tetraborate-decahydrate and 5% v/v
MeCN-MeOH (3:1) at a final buffer pH 9.16-9.22.
Separation wavelength, 225 nm; separation voltage, 25 kV.
Hydrodynamic injection of sample at 50 mbar for 10 s.
Total capillary length: 48.5 cm. Effective capillary length:
40 cm.

5.20 Electropherograms of pulp mill effluent water obtained as 112 tabulated in Table 5.17. (A) treated A, (B) treated B, (C) untreated A and (D) untreated B.

6.1	Comparison of intensity of (1) dicrotophos, (2)	116	
	monocrotophos and (3) phosphamidon at different detection		
	wavelengths which are 225 nm and 195 nm under the same		
	running buffer conditions. Separation buffer: 20 mM		
	phosphate at buffer pH 2.3, 10 mM SDS and 10% v/v $$		
	methanol. Separation wavelength, 225 nm; separation		
	voltage, -25 kV; hydrodynamic injection for 50 s at 50		
	mbar. Capillary total length, 48.5 cm; effective length, 40		
	cm.		
6.2	The influence of different wavelengths on peak area	117	
	response for dicrotophos, monocrotophos and		
	phosphamidon. Separation conditions is similar Figure 6.1.		
6.3	The influence of different wavelengths on peak height	118	
	intensity for dicrotophos, monocrotophos and		
	phosphamidon. Separation conditions is similar to Figure		
	6.2.		
6.4	Calibration curves based on (A) peak areas and (B) peak	119	
	heights for the separation of hydrophilic OPPs in RM-		
	MEKC. Separation conditions remain the same as in Figure		
	6.3.		
6.5	Electropherogram of (1) dicrotophos, (2) monocrotophos	120	
	and (3) phosphamidon at 100 ppm each when injected in		
	triplicates. Separation conditions remain the same as in		
	Figure 6.4.		
6.6	Variations in efficiency, N in the concentration range for	121	
	dicrotophos, monocrotophos and phosphamidon using RM-		
	MEKC. Separation conditions of Figure 6.5.		
6.7	Schematic diagram of the priniciple of stacking with reverse	122	
	migrating micelles in MEKC. EOF, electroosmotic flow;		
	SB, stacking boundary.		

6.8	Calibration curves based on (A) peak areas and (B) peak	123	
	heights for the separation of hydrophilic OPPs in SRMM-		
	MEKC. Separation buffer: 20 mM phosphate at buffer pH		
	2.3, 10 mM SDS and 10% v/v methanol. Separation		
	wavelength: 225 nm. Separation voltage: -25 kV.		
	Hydrodynamic injection for 50 s at 50 mbar. Capillary total		
	length: 48.5 cm. Effective length: 40 cm.		
6.9	Separation of hydrophilic OPPs using SRMM-MEKC at	124	
	mixture at (A) 10 ppm, (B) 20 ppm and (C) 30 ppm for		
	(1)dicrotophos, (2) monocrotophos and (3) phosphamidon.		
	Separation conditions remain the same as in Figure 6.8.		
6.10	Variations in N in the concentration range for dicrotophos,		
	monocrotophos and phosphamidon using SRMM-MEKC.		
	Separation conditions similar to Figure 6.9.		
6.11	Electropherograms of extracted blank pond water (A) and of	129	
	dicrotophos (1), monocrotophos (2) and phosphamidon (3)		
	at (B) 0.5 µg and (C) 1 µg. Separation buffer: 20 mM		
	phosphate at buffer pH 2.3, 10 mM SDS and 10% v/v		
	methanol. Separation wavelength, 225 nm; separation		
	voltage, -25 kV; hydrodynamic injection for 50 s at 50		
	mbar. Capillary total length, 48.5 cm and effective length,		
	40 cm.		

LIST OF SYMBOLS

D, d	-	Diameter (µm)
Ip	-	Sample plug length
L	-	Length (cm)
Ν	-	Efficiency
Р	-	Pressure (mbar)
r^2	-	Correlation coefficient
R _s	-	Peak resolution
Т	-	Temperature (°C)
t _m	-	Migration time
V _p	-	Volume of sample loaded
α	-	Selectivity
η	-	Viscosity

LIST OF ABBREVIATIONS

ACh	-	Acetylcholine
AChE	-	Acetylcholinesterase
ASE	-	Accelerated solvent extraction
BGE	-	Background electrolyte
BGS	-	Background solution
CD	-	Cyclodextrin
CD-MEKC	-	Cyclodextrin assisted MEKC
CHES	-	2-(N-Cyclohexylamino)ethane sulfonic acid
СМС	-	Critical micelle concentration
CZE	-	Capillary zone electrophoresis
DAD	-	Diode-array detection
DMSO	-	Dimethyl sulphoxide
EPA	-	Environmental Protection Agency
EOF	-	Electroosmotic flow
FESI	-	Field enhanced sample injection
HCSSM	-	High conductivity sample stacking mode
HRGC	-	High resolution gas chromatography
HRMS	-	High resolution mass spectrometry
HSW	-	Hazardous solid waste
ID	-	Isotope dilution
i.d.	-	Internal diameter
LD	-	Detection limit
LLE	-	Liquid-liquid extraction
LMT	-	N-lauroyl-N-methyltaurate
LOD	-	Limit of detection
MASE	-	Microwave-assisted solvent extraction

MeCN	-	Acetonitrile	
MEKC	-	Micellar electrokinetic chromatography	
МеОН	-	Methanol	
MSPD	-	Matrix solid phase dispersion	
MSW	-	Municipal solid waste incinerator	
NACE	-	Non-aqueous capillary electrophoresis	
NaCl	-	Sodium chloride	
NM	-	Normal mode	
NSM	-	Normal stacking mode	
OPPs	-	Organophosphorous Pesticides	
PBDE	-	Polybrominated diphenyl ether	
РСВ	-	Polychlorinated biphenyls	
PCDD	-	Polychlorinated dibenzodioxins	
PCDF	-	Polychlorinated dibenzofurans	
PLE	-	Pressurized liquid extraction	
poly-SUS	-	Polysodium undecyl sulfate	
REPSM	-	Reversed electrode polarity stacking mode	
RSD	-	Residual standard deviation	
SC	-	Sodium cholate	
SDS	-	Sodium dodecyl sulphate	
SEF	-	Sensitivity enhancement factor	
SPE	-	Solid phase extraction	
SPDE	-	Solid phase disc extraction	
SPME	-	Solid phase microextraction	
SDME	-	Single drop microextraction	
SPMD	-	Semi permeable membrane devices	
SRM	-	Standard Reference Material	
SRMM	-	Stacking with reverse migrating micelles	
SRW	-	Stacking with reverse migrating micelles and a water	
		plug	
TEF	-	Toxic Equivalent Factors	
TEQ	-	Toxic Equivalent Concentrations	
TCDD	-	Tetrachlorodibenzodioxins	
	-	2,3,7,8-tetracholordibenzo-p-dioxin	

TCDF	-	Tetrachlorodibenzofurans
	-	2,3,7,8-tetrachlorodibenzo-p-furan
UV	-	Ultraviolet

CHAPTER I

SUMMARY OF THESIS

1.1 Background

Since its introduction in the late 1980s, micellar electrokinetic chromatography (MEKC) has been widely used in the pharmaceutical industry and in environmental analysis. MEKC is a mode of capillary electrophoresis able to separate both ionic and neutral analytes with the usage of charged micelles in a single run. Separation by electrophoresis is obtained via differential migration of solutes of charged species in an electric field performed in narrow-bore capillaries with inner diameter (i.d) of 25-75 μ m filled only with buffer. Its advantages lie in its flexibility in manipulating various parameters on-column in order to obtain the best separation and to improve sensitivity. Furthermore, separation time is faster compared to conventional methods such as gas chromatography and high performance liquid chromatography with very little sample and solvent requirement.

1.2 Summary of Thesis

This study was conducted into two parts as two different separation conditions were used. The first part was the study on separating polychlorinated dibenzo-*p*-dioxins (2,3,7,8-tetrachlorodibenzo-*p*-dioxin) and polychlorinated dibenzo-*p*-furans (2,3,7,8-tetrachlorodibenzo-*p*-furan) which were conducted under basic conditions. The second part was the study of three hydrophilic organophosphorous pesticides (OPPs) under acidic buffer conditions. The three hydrophilic organophosphorous pesticides were monocrotophos, dicrotophos and phosphamidon. This chapter summarizes every chapter covered in this work.

Chapter 2 introduces the background behind this work. It explains in detail the physical and chemical properties of the test analytes which are the polychlorinated compounds (PCDDs and PCDFs) and the hydrophilic pesticides. The potential routes of PCDDs and PCDFs in humans and wildlife are also discussed. While for the OPPs, we touched on the toxicity of the pesticides. Various extraction and detection methods are also discussed for both class of analytes in this chapter. On-line preconcentration methods using MEKC are also discussed in detail. The objectives of this study and the problem statements are also covered.

Chapter 3 discusses the experimental methods used in this work. The instrumental aspect covers the capillary electrophoresis system used for our analysis and the extraction set-up used. Conditioning of the capillary was also discussed in detail for both polychlorinated compounds and pesticides analysis. For both polychlorinated compounds and the pesticides, the methodology used in optimizing parameters and online preconcentration techniques used are found in Chapter 3.

Chapter 4 covers the optimization of parameters used in the MEKC analysis of TCDF and TCDD. The parameters optimized are the fraction of organic modifier used in the running buffer in order to improve peak resolution. Single modifiers used were methanol and acetonitrile at various percentages in the running buffer. These were then compared with mixed modifier mode at different fractions of acetonitrile and methanol in the running buffer. The second parameter involved the type of sample matrix used. In aqueous mode, the analytes were diluted in water and in the same fraction as the running buffer. While for non-aqueous mode, analytes were diluted in the organic solvent which was ethanol. Different sample matrixes were investigated to study the effect of the sample matrix on separation efficiency.

Chapter 5 explores the various on-line preconcentration techniques used to reduce the detection limit for both TCDF and TCDD. Five types of on-line preconcentration techniques were used which were normal stacking mode (NSM), reversed electrode polarity stacking mode (REPSM), high conductivity sample stacking mode (HCSSM), sweeping and field-enhanced sample injection (FESI). Out of the five, the on-line preconcentration technique which gives the best limit of detection (LOD) would be chosen to be applied to the real sample. HCSSM was chosen as the optimized stacking method. This is then followed by off-line preconcentration technique which is solid phase disc extraction (SPDE) to further reduce the existing limit of detection (LOD) by offering sample enrichment. SPDE is also able to do sample clean-up by removing interference in the matrix that would interfere with the analysis. The combined HCSSM-SPDE was then applied to real sample analysis of spiked deionised water and effluent water obtained from a pulp mill at Temerloh, Pahang.

Chapter 6 involves the analysis of three hydrophilic OPPs which are dicrotophos, monocrotophos and phosphamidon. In this chapter, the analysis using MEKC was conducted under acidic conditions. This section discusses the wavelength optimization for analyzing the three analytes using diode-array detection (DAD). The wavelength that offers the best peak area and peak height was used in the stacking method. Stacking with reverse migrating micelles (SRMM) was used to reduce the detection limit (LODs) of the three analytes. This is followed by solid phase disc extraction (SPDE) in order to reduce the LODs further by offering sample enrichment and clean-up. The combined SRMM-SPDE was then applied to analyzing spiked pond water obtained from the UTM lake.

Chapter 7 presents the conclusions and suggestions for further studies. This chapter summarizes the results obtained throughout the study such as the optimized conditions and recovery studies from the extraction method. Suggestions are presented and discussed for further improvement of the study for future usage.