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Abstract— Orbital propagation models are used to predict the position and velocity of natural and artificial objects orbiting the Earth. 

It is crucial to get accurate predictions to ensure proper satellite operational planning and early detection of possible disasters. It became 

critical as the number of space objects grew due to many countries scrambling to explore space for various purposes such as 

communications, remote sensing, scientific mission, and many more. Physical-based and mathematical expression approaches provide 

orbital propagation with high accuracy. However, these approaches require substantial expenditure to provide suitable facilities and 

are complicated for those with no expertise in this field. The orbital propagation model is developed using regression techniques and 

artificial neural networks in this study. The aim is to have a reliable and precise orbital propagation model with minimal computational 

and cost savings. The past orbital data is used instead of complicated numerical equations and expensive tools. As a result, the trained 

orbital propagation model with accuracy up to 99.49% with a distance error of 18.73km per minute is achievable. The trained model 

can be improved further by modifying the network model and various input data. This model is also expected to provide vital 

information for organizations and anyone interested. Finally, this research can help organizations with insufficient resources to have 

their orbit propagation model without special tools or rely on other countries with satellite data at a lower cost. 
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I. INTRODUCTION

Awareness of the situation in space is essential for future 

missions of satellites, preventive measures in the event of a 

collision, and the identification of untraceable space objects 

[1], [2]. All of these are critical issues affecting the space 

industry. An incident of a space object occurred in February 

2009, involving the U.S. Iridium communications satellite 

and Russia's Cosmos 2251 communications satellite. One of 
the leading causes of this phenomenon is the inability orbital 

propagation models to obtain accurate information about the 

satellite's position [3], [4]. Therefore, getting a reliable and 

precise orbital propagation model is very important to avoid 

such things recurring. As the number of space objects 

increases, the risk of conflict will indirectly increase [5], [6]. 

Figure 1 shows the trend of space objects in Earth Orbit 

according to the types of objects that increase each year, 

which require attention from all parties involved [7]. It is 
because this issue not only can cause problems for the space 

industry but also endanger humankind. 

Various approaches are used in the orbital propagation 

model: physical-based, mathematical expression, analytic 

solution, machine learning, data-driven, and hybrid method 

[8]–[12]. Figure 2 describes the orbital propagation 

approaches used. Each approach has its pro and cons. The 

physical-based gave an accurate result, but it is very costly 

and usually used by the country with the expert and financial 

capability. While the mathematical expression approach also 

gives high accuracy, it is not effortless and requires the expert 
to do the task. A data analytic solution is recently preferred as 

it is accessible and used despite limited expert and financial 

capabilities. Same with the machine learning, data-driven, and 

hybrid approach. Therefore, many researchers have 

conducted studies to find better solutions and make them 

accessible to everyone.  
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Fig. 1  A Number of Objects in Earth Orbit by Object Type [7] 

 

 

Fig. 2  Orbit Propagation Approaches [8] 

 
The machine learning approach under the supervised 

learning technique is used for this study. Machine learning has 

solved a lot of complicated tasks by learning the data [13]. 

This approach enables the prediction process without 

explicitly modeling space objects and limited space 

environment information. Instead, the models are developed 

based on historical data only. Numerous studies conducted 

had improved the accuracy of the orbital propagation model 

using machine learning techniques. Among them are the 

support vector machine, nonlinear regression, artificial neural 

network (ANN), etc. [3], [14], [15]. These studies proved that 
the learning techniques could make predictions while 

maintaining the orbit propagation model's accuracy using 

historical data with limited resources. However, each method 

has its strengths and limitations depending on different data 

types, sizes, dataset behavior, etc. Therefore, further studies 

and analysis are indispensable to provide the best possible 

solution. 

In this study, the regression technique and ANN are studied 

for modeling orbital propagation. Compared with previous 

research, this study aims to use minimal input data from the 

historical data to develop a reliable orbital propagation model. 

Furthermore, the minimal input data is expected to address 

data uncertainty and limited information that causes various 

assumptions during the modeling process. Besides that, an 

analysis is done to check the required input features for 

creating an optimal trained model network structure while still 
giving an accurate result. Thus, this study targets the 

developed orbit propagation with minimal computation and 

cost-effectiveness, such as processing speed, time, etc. This 

paper is arranged as follows. Section II describes the 

prediction technique used for modeling orbital propagation 
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and methodology. Next, section III discusses the findings and 

limitations of the study. Finally, the last section summarizes 

the paper and shows the future work of this study. 

II. MATERIALS AND METHOD 

This section presents an overview of the prediction 

techniques and elaborates on the methodology used in this 

study. 

A. Prediction Technique 

The orbital propagation data is time-series data. Thus, the 

selected prediction techniques must be appropriate and 

suitable for this data type. Furthermore, it ensures that it can 

help improve the current model and the prediction process 

become more accurate and reliable. For this study, the 

regression technique and ANN technique are chosen. 

The regression technique is used for the input data features 
selection. This technique is used as it is not complicated and 

easy to interpret. Also, it is suitable for time-series data [16], 

[17]. The feature selection is required to identify the most 

affected input data needed for the trained model. Thus, it 

ensures only the necessary data is used and speeds up the 

model development process while maintaining accuracy. 

Meanwhile, the ANN is recommended to handle time-

series data and nonlinear patterns [18], [19]. It is also proven 

to be the most common stochastic learning method for 

predicting [14], [15]. Besides that, the ANN can be modified 

to help the prediction process become more accurate and 

reliable. In this study, a nonlinear autoregressive exogenous 
(NARX) model is a solution used in the neural network for 

the time series data prediction [20]. It relates the current value 

of a time series to both: past values of the same series; and 

current and past values of the driving (exogenous) series — 

that is, of the externally determined series that influences the 

sequence of interest. This model is stated as follows. 

 y(t) = f(x(t-1), …x(t-d), y(t-1), …, y(t-d)) (1) 

Where y is the predicted series, d is the past value of y(t), 

and another series of x(t). At the same time, the function f is a 

neural network. 

B. Methodology 

In this study, the first action taken is data collection. The 

data used in this study is the two-line element (TLE) data 

provided by North American Aerospace Defense Command 

(NORAD). The TLE is an open-source data accessible 

worldwide except for the United States’ military data and 

alliances[21], [22]. NORAD supplies the TLE data that 

belong to satellites, namely special-interest satellites, weather, 

Earth resources satellites, communication satellites, 

navigation satellites, scientific satellites, and various satellites. 
For this study, the space object information is extracted 

from TLE data and processed using the Simplified General 

Perturbations-4 (SGP4) model to prepare the trained data. The 

SGP4 model was used to ensure maximum predictive 

accuracy obtained [15], [23], [24]. In addition, it is to ensure 

only valid data is prepared and used for the trained model. The 

SGP4 model covers various elements and values of orbital 

interference; thus, it is a complete model compared to other 

available orbital propagation models such as Two-Body, J2, 

J4, GPS (SEM/YUMA), LOP SGP4, Astrogator, etc. [21], 

[23]. 

A specific space object's raw data from the TLE data is then 

processed to propagate the space object's position. The data 

sampling can be done for different intervals such as second, 

minute, hour, etc. For this study, the data sampling is done per 

minute as it is enough for the model to learn the data pattern. 

Data with a large interval will make it difficult for the model 

to understand the data, while the small sampling interval will 

cause too much data and slow down the modeling process. 
Special tools may be required to speed up the modeling 

process if it continues.  

Next, the selection for data input features is made. The 

analysis is done to check the most affected features that need 

to be used in the trained model. Then, the design and modeling 

are executed. Finally, the trained model is evaluated to check 

the model's performance before the prediction can be made. 

Figure 3 shows the process flow of the study. 

 

 
Fig. 3  Process flow 

C. Data Preprocessing 

The regression technique will process the data to identify 

which input features are most affected by the response output. 

The finding will help the model to train well. In this study, 

neighborhood component analysis (NCA) is used. It is a non-

parametric method for selecting features to maximize 

regression and classification algorithms [25]. For NCA 

features selection regression, the response values are 

continuous. The function to perform the NCA features 
selection for regression is given as follows. 

 � = {��� , ��	, 
 = 1,2,… ,�} (2) 

Where �  is observations �� ∈ ℝ  are continuous, and 

response y is aimed to predict with the training set �. Figure 4 

shows the X Position (ro_x) for satellite 25994 in 30 days of 

observation used in the NCA process. 
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Fig. 4   X Position (ro_x) for 30 days observation 

 

Meanwhile, Figure 5 shows a periodic pattern of X position 

(ro_x), which only the first 1440 observations plotted as it is 

difficult to see detailed features for all data samples as in 

Figure 4. 

 
Fig. 5   X Position (ro_x) for one day observation 

 

The X Position (ro_x) is the response y, and eight (8) input 

data features are related to this response, xi. These features are 

(1) drag or radiation pressure coefficient, (2) eccentricity, (3) 

epoch, (4) an argument of perigee, (5) inclination, (6) mean 
anomaly, (7) mean motion, and (8) right ascension of the 

ascending node. These eight (8) features are the space object 

information extracted from the TLE data. This data 

information is also known as the Keplerian elements. 

Next, the function achieves feature selection by 

regularizing the feature weights. The weights of the irrelevant 
features are zero, and relevant features will give a particular 
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weight value. Table 1 lists the result of the weight features to 

the response X position (ro_x). 

TABLE I 

FEATURES WEIGHT RESULTS 

Features Features 

Index 

Feature 

Weight 

Drag  1 1 
Eccentricity 2 1 
Epoch 3 1.7 
Argument of Perigee 4 3 
Inclination 5 1 
Mean Anomaly 6 3 
Mean Motion 7 1 

Right Ascension of The 
Ascending Node 

8 1.8 

 

From the feature selection result, the weights of all features 

are more than zero. Therefore, it is shown that all eight (8) 

features affect the response output. However, the most 

affected features with the highest value are the argument of 

perigee and mean anomaly. Thus, further analysis will be 
done to see whether using two features is enough to train the 

model or all features required for the training model. 

D. Design and Modelling 

The training data set typically consists of single-column 

data frame values for time series prediction. In this study, the 

values are the positions of a space object in coordinate value 

(ro_x, ro_y, ro_z). Each value is formulated as sequence such 

as, ro_x = [ro_x1, ro_x2, ro_x3, ..., ro_xn].  Figure 6 shows the 
NARX Neural Network Model architecture used to develop 

the orbital propagation model of eight (8) input data 

predictors (features). 

 

 
Fig. 6  NARX Neural Network Orbit Propagation Model using Eight (8) 

Features 

 

The training input data consist of a predictor, xt which 

includes eight (8) features (drag or radiation pressure 

coefficient; eccentricity; epoch; an argument of perigee; 
inclination; mean anomaly; mean motion and right ascension 

of the ascending node) and the response output, yt (ro_x, ro_y, 

ro_z) position. Then, the network is created and trained in 

open-loop form as it is more efficient and can supply the 

network with correct past output. 

Meanwhile, Figure 7 shows the NARX Neural Network 

orbit propagation model architecture using two (2) input data 

predictors, xt (most affected features: the argument of perigee 

and mean anomaly). The training input data consist of two (2) 

predictors (an argument of perigee and mean anomaly) and 

the response output, yt (ro_x, ro_y, ro_z) position. 
 

 
Fig. 7  NARX Neural Network Orbit Propagation Model using Two (2) 

Features 

 

The data size used is 30 days that, is 43200 samples. Then 

it is divided into 30240 samples for training data; validation 

data is 6480 and testing data about 6480. Both models used 
ten (10) hidden layers, and the network is trained using the 

Levenberg-Marquardt algorithm. In addition, network 

training functions update weight and bias values are also 

according to this algorithm. After each iteration, the network 

updates the weights and bias values to get predicted values 

closer to target values. It minimizes the combination squared 

error and then determines the right combination to produce an 

optimized network. However, this algorithm requires more 

memory and less time to process. The training automatically 

stops when the generalization stops improving. This is 

indicated by the increase in the mean square error of the 
validation samples. Matlab is used as a tool for the modeling 

process. 

E. Evaluation 

Comparing the trained model and the actual result 

evaluates the trained model's performance for the evaluation 

process. The methods used to assess and validate the 

improved model's performance are the root mean squared 

error (RMSE). These methods can be calculated using the 

following equations. 

 ���� = ��
�∑ ��� − ���	�����  (3) 

Whereby  �� is the actual output, ��� is the predicted output, 

and N is the number of samples used. These functions also can 

be used as an optimization criterion of the improved model. 

Meanwhile, equation (4) and equation (5) are used to evaluate 

the model's performance. 

 � !� = �""
� ∑ | $%&$�%$% |����  (4) 

 !'( = 100 − � !� (5) 

The smaller the RMSE and MAPE score, the better the 

model performance. In contrast, the PML result is higher, the 

better the model's performance. At the end of this phase, the 

result will decide if the trained model can assist the orbit 

propagation process or vice versa. 

III. RESULTS AND DISCUSSION 

In this section, the result of this study is shown and 
discussed. Table 2 shows the trained model performance 

result using eight (8) and two (2) features. 
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TABLE II 

TRAINED MODEL PERFORMANCE RESULTS 

Position 8 Features 2 Features 

MSE 

(km) 
Speed Time 

(hh:mm:ss) 

MSE 

(km) 
Speed Time 

(hh:mm:ss) 

ro_x 1.60e-2 0:02:00 1.16e-4 0:01:01 
ro_y 0.029 0:02:07 5.64e-4 0:00:57 
ro_z 5.59e-3 0:02:13 3.68e-4 0:00:56 

 

The result shows that using two (2) features has the lowest 

MSE value and speed time result for each position 

performance value. Besides that, a one-day prediction ahead 

is also made using the trained model. The results show that 

using only two (2) features is sufficient to develop an accurate 
model compared to eight features with performance, PML up 

to 99.49%, and a distance error of 18.73km per minute for X 

Position (ro_x). While using eight (8) features, the achieved 

PML is 90.43% and distance error of 151.14km per minute. 

The same goes for Y Position (ro_y) and Z Position (ro_z) 

values, where the result using two (2) features is better than 

eight (8) features. However, the network configuration setting 

for Y Position (ro_y) and Z Position (ro_z) will be further 

investigated and retuning for a more accurate result. The 

summary of the evaluation results is listed in Table 3. 

TABLE III 

SUMMARY OF EVALUATION RESULTS 

Number of 

Features 

Position RMSE 

(km) 

MAPE 

(%) 

PML 

(%) 

2 ro_x 18.73 0.51 99.49 

ro_y 202.45 40.95 59.05 

ro_z 192.30 18.09 81.91 

8 ro_x 151.14 9.57 90.43 

ro_y 218.04 46.48 53.53 

ro_z 1103.93 51.60 48.40 

 

The results also indicate that the proper learning techniques 

must be considered to develop an accurate orbit propagation 

model. The ANN technique is performed well, and it is 

recommended due to its flexibility to deal with time-series 

data and proven to provide accurate and reliable results. 

Figure 8 shows the X position comparison value for one (1) 

pass of satellite 25994 orbiting the Earth, which takes about 
125 minutes. It shows that the model trained used two (2) 

features is nearer to the actual result than the model trained 

used the eight (8) features. 

 
Fig. 8   Comparison between Two (2) Features and Eight (8) Features Trained Model for X Position 

 

Meanwhile, Figure 9 shows the 3D illustration of satellite 

25994 positions (ro_x, ro_y, ro_z) orbiting the Earth for one 

(1) pass. Through this figure, the track of space objects 
orbiting the Earth can be seen and analyzed. Also, the 

predicted position used two (2) features close to the space 

object's actual position compared to the predicted position 

used eight (8) features. 
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Fig. 9   3D Illustration of Satellite 25994 Orbital Propagation Actual vs. Predicted 
 

In general, this study shows that the ANN can provide more 

flexible solutions. Compared to the previous studies, most of 

them used more features can produce a more accurate orbit 

propagation model. However, it is different from this study as 

it shows the opposite way. For example, a study by [9] shows 

that using more input features gave higher accuracy. However, 

they are using the Holt Winter, a tricky statistical technique 

that requires more input data. A similar problem can be solved 
more easily through ANN as it does not require much input to 

produce an accurate model. However, this should not make 

the primary basis as there is a possibility that the data 

configuration used in their study might be different from this 

study. 

Other studies also select features by training all features, so 

it takes time. Meanwhile, this study chooses the features 

through the linear regression technique. The results can then 

identify the features that most affect the final development of 

the model by comparing all features as in Table I. Then, the 

researcher can explore further with various approaches such 
as network structure diversity for ANN, data configuration 

such as sizing training data, time steps, and others. 

Nevertheless, to ensure the accuracy of the trained model, 

the TLE data has to be updated. It should not become an issue 

because NORAD is released the TLE data at regular periodic 

intervals [26]. The TLE data is known as the most 

comprehensive space object cataloging system in which the 

information is updated every 1-2 days for the expected target, 

and for the critical target, it will be updated 2-3 times every 

day [23][27][28]. However, this issue still needs to be 

considered because we do not want to rely too heavily on TLE 
data to make orbital propagation. Hence, further studies shall 

be done, especially in countries with no facilities and 

expertise in this field. 

IV. CONCLUSION 

In conclusion, the regression technique and ANN, the 
learning method, can do an orbital propagation model using 

the observed and historical data with minimal input data. 

Therefore, it is simpler and easier to be accessed by any 

organization or anyone interested. Using two (2) most 

affected features is enough to develop to train the model 

instead of using all features. It eventually has expedited the 

process and save processing time. Also, it reduces 

computational and cost-saving. The trained orbital 

propagation model's performance can also be up to 99.49%, 

with the 18.73 km distance error per minute. The main 

contributions of this work include the following fold. First, 
the NARX model using ANN is developed to learn the TLE 

dataset's complex data distribution. Second, the model can 

learn from the historical data by using minimal features. 

Finally, the evaluation of the trained model is done and 

proved to have an accurate orbit propagation model. 

In general, this study can also conclude that many input 

features may reduce accuracy. Some of the input features do 

not have clear values and fluctuate due to surrounding factors 

such as perturbation and solar drag, resulting in unstable 

developed models. 

Despite that, the trained model is only used for one class of 

satellites in this study. Other classes of space objects shall be 
studied in the future to ensure this kind of research can 

contribute more to space awareness. Besides that, some of the 

future work that can be done is studying other learning 

techniques that can create updated Keplerian elements instead 
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of downloading the TLE data from NORAD. Such as 

randomly creating the TLE and optimizing using the genetic 

algorithm (GA) methods, particle swarm optimization (PSO), 

etc. 
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