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One of the major causes of cardiovascular disease is atherosclerosis or stenosis. This 
study is designed to improve the current body of knowledge regarding the condition by 
inserting a long thin tube called a catheter to widen the narrow part in the artery. The 
study reviewed the effects of catheter radius, yield stress, and power law index on the 
velocity distribution, and transport coefficients of solute. A mathematical model is 
deployed to investigate the dispersion of solute in the flow of a Herschel-Bulkley (H-B) 
fluid in an annulus, whereas the dispersion process is studied using the generalised 
dispersion model (GDM) by solving the convective diffusion equation. Resultantly, the 
velocity reduces following an increase in the yield stress, catheter size, and power law 
index. Meanwhile, the dispersion coefficient exhibits a same behaviour as the 
aforementioned parameters ascend considerably. The dispersion coefficient alterations 
occurred rapidly for small values of time and became significantly constant following an 
increase in the time values. Conclusively, this study can be useful in dispersion of a drug 
to the affected artery where an abnormal plaque was formed. 
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1. Introduction 
 

The transportation of solute dispersion process has been widely studied due to its extensive 
application in the field of chemical engineering, physiological fluid dynamics, biomedical engineering, 
environmental sciences, and pharmacology [1,2]. Studies on the dispersion of solute, such as drug, 
toxin, or nutrient, in blood flow through a narrow artery having a linear or constricted wall received 
much attention owing to its significant contribution in understanding the issues in biomedical 
engineering and cardiovascular mechanics [3-5]. Constriction in an artery occurs because of the 
accumulation of low-density lipoprotein (LDL) and other macromolecules along the inner lining of the 
arterial wall. The formation of such lesion or plaque started blocking the artery and reducing the 
normal blood flow, medically termed as atherosclerosis or stenosis. It is important for clinicians to 
analyse the rate of dispersion of an injected drug associated with intravenous drug delivery into an 
affected artery because of its therapeutic nature and also to measure the amount of drug in the 
system for better efficacy as well as the effectiveness of the delivery [6]. In this situation, a long thin 
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tube called a catheter is inserted into the veins to refine the flow. The use of catheters is of immense 
importance and has become a standard tool for diagnosis and treatment in modern medicine [7]. The 
catheter is carefully guided to the location at which stenosis occurs and the balloon is then inflated 
to fracture the fatty deposits and widen the narrowed part of the artery. 

Catheterized arteries are now extensively used in medical science to measure various 
physiological flow characteristics as well as to diagnose and treat various arterial diseases. Numerous 
researchers have recently evaluated the blood flow in an annulus employed in a catheterised 
stenosed artery [8-10]. However, these studies did not consider the mass transfer that governs the 
flow of mass transport in the systemic circulation. The convective diffusion equation controls the 
mass transfer to the bloodstream [11]. A method known as the generalised dispersion model (GDM) 
was proposed by Gill and Sankarasubramanian [12] to generate an exact solution of the convective 
diffusion equation, which is applicable at all times.  

Hence, based on the existing literature, there is a lack of studies on the problem of unsteady 
solute dispersion in blood flow by considering the H-B fluid model in an overlapping catheterised 
stenosed artery using the GDM. This study extends the works by Sankar and Hemalatha [13] and 
Abbas et al. [14] by investigating the rheological behaviour of blood flow in an overlapping stenosed 
artery. The investigation of solute dispersion in a non-Newtonian fluid is crucial to yield realistic 
results that better represent physical problems. This study aims to investigate how reactive solute 
disperse in the solvent is influenced by physical parameters such as catheter radius, yield stress, and 
power law index. Specifically, the contributions of the study are twofold, firstly to evaluate the effects 
of reactive species in an overlapping catheterised stenosed artery using GDM that was only 
addressed individually in previous studies, and secondly to analyse the rheological behaviour of non-
Newtonian fluid in a catheterised stenosed artery. 
 
2. Mathematical Formulation  
 

A catheter is inserted into an artery coaxially, and the artery takes the form of a rigid circular 
tube. Radius of the circular tube is 𝑅! and radius of the catheter is given as 𝑘𝑅!, 𝑘 < 1. Consider a 
steady, axially symmetrical, laminar, and fully developed uni-directional flow of blood in the axial 
direction portrayed as a viscous incompressible non-Newtonian fluid. Herschel-Bulkley (H-B) fluid 
model is employed to illustrate the blood flow. The entrance, endpoint and distinctive wall effects of 
the artery can be disregarded given the sufficient length of the arterial segment.  
 
2.1 Governing Equations 

 
A cylindrical polar coordinate (�̅�, 𝜃,* 𝑧̅) is used in the study where �̅� and 𝑧̅ denote the radial and 

axial coordinates and �̅� is the azimuthal angle. The fluid velocity in �̅� direction is ignored as its 
magnitude is negligibly small and only accounts in a 𝑧̅ direction. Thus, 𝑢."̅ = 𝑢.$% = 0 [15]. Since the 
pressure gradient is a function of 𝑧̅	only and independent of �̅� and �̅�, thus 𝑑�̅� 𝑑𝑧̅⁄  is constant, hence, 
the momentum equation can be simplified as 

 

                               (1) 

 
where the constant pressure, shear stress, catheter radius and radius of stenosed artery are 
represented as �̅�, �̅�, 𝑘.  and 𝑅.(𝑧̅), respectively. The following equation presents the constitutive 
equation of H-B fluid 

( ) ( )t= - £ £
1 ,     ,dp d r k r R z
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                                                                     (2) 

 
where 𝑢., �̅�&'  and n is the axial velocity, yield stress, and power law index, respectively. Meanwhile, 
the H-B fluid viscosity coefficient is represented by 𝜂() with dimension (𝑀𝐿*+𝑇*,)-𝑇. The unknown 
parameters, velocity 𝑢. and shear stress �̅�, can be solved using Eqs. (1) and (2) based on the no-slip 
boundary conditions for the catheter wall and artery presented below 
 

                                                           (3) 

 
2.2 Non-dimensionalisation 
 

Introducing the following dimensionless variables 
 

                                                                     (4) 

 

where 𝐶 is the solute concentration, 𝑢 is the velocity, 𝑢. is the average velocity, 𝑢! =
/!
"#$0!"

,"1%&
 is the 

centreline velocity, r is the radial distance, 𝑅(𝑧) is the radius of the stenotic artery, z is the axial 
distance, 𝜏 is the shear stress, 𝜃 is the yield stress, 𝑙! is the stenosis length, 𝛿 is the stenosis height, 

𝑘 is the catheter radius and 𝜂() = 𝜇 >0!/!
,
?
-*+

, where 𝜇 is the viscosity coefficient for a Newtonian 
fluid.  

 
2.3 Geometry of Stenosis 
 

The geometry of the artery in the dimensionless form can be written as Layek et al., [16] and 
ZainulAbidin et al., [17] 

 

                       (5) 
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where 𝛿 is the maximum stenosis height occurs at 𝑑 + 𝑙! 3⁄  and 𝑑 + 2𝑙! 3⁄ , 𝑑 is the distance of the 
stenosis from the inlet, and L is the length of the artery. The geometry of a catheterised artery with 
an overlapping stenosis under consideration is shown in Figure 1.  
 

 
Fig. 1. The geometry of catheterised artery with an overlapping stenosis 

 
2.4 Mass Transport 
 

The transport of a reactive solute in the bloodstream in dimensionless form is governed by the 
convection-diffusion equation [18], which is expressed as 

 

                                                                                                                   (6) 

 
where Pe is the Peclet number, t is the dispersion time, 𝐷. is molecular diffusivity of the solute which 
is assumed as constant. 

 
2.5 Method of Solution 
 

The momentum Eq. (1) in dimensionless form can be stated as 
 

                                                                                                                     (7) 

 
where 𝑝2 is the dimensionless pressure gradient in steady state. The constitutive Eq. (2) in 
dimensionless form is  
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         (8) 

 
Integrating Eq. (7) with respect to r yields 

 

             (9) 

 
where 𝐶 is the constant of integration. Referring to Eq. (8), there are three different flow regions for 
𝑘 ≤ 𝑟 ≤ 𝑅(𝑧), in which the central core region has a constant velocity and forms the plug flow 
region. Flow in this plug flow region is not sheared which means blood streamlines are moving at 
constant velocity because the shear stress is lesser than yield stress. The fluid (blood) will not flow at 
this region rather it is transported by the fluid particles present in the nearby shear flow region as a 
solid mass with a constant velocity. For mathematical representation, the plug flow region can be 
described by 𝜆+ ≤ 𝑟 ≤ 𝜆,, where 𝑘 ≤ 𝜆+ and 𝜆, ≤ 𝑅(𝑧). 𝜆+ and 𝜆, are unknown constants to be 
identified. The three regions are depicted as in Figure 1. From the continuity of the shear stress along 
the plug flow region boundary, we have 
 

                        (10) 

 
Using condition (10) in Eq. (9), the unknown constant 𝐶 is evaluated in terms of 𝜆+ and 𝜆, as 

 
                        (11) 

 
where 
 

                       (12) 
 

Substitution of Eq. (11) in Eq. (9) delineates the shear stress as 
 

                      (13) 

 
Using Eq. (13) and condition (10) yields 
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where 𝜍3 is the width of the plug core region. Velocity expressions for the three regions can be found 
using Eqs. (13) and (8) as below 
 

               (15) 

 
                  (16) 

 

                          (17) 

 
where 𝑢4(𝑟), 𝑢0 and 𝑢44(𝑟) represent the shear flow region from 𝑘 ≤ 𝑟 ≤ 𝜆+, 𝜆+ ≤ 𝑟 ≤ 𝜆, and 𝜆, ≤
𝑟 ≤ 𝑅(𝑧), respectively. Absence of yield stress (𝜃 = 0) will result to 𝜍3 = 0, where both Eqs. (15) 
and (17) will result to velocity field in the catheterised artery for power law fluid, a finding that is in 
line with Kapur [19]. To ensure continuous velocity distribution for the entire flow field, below 
condition needs to be fulfilled  
 

                      (18) 
 
This gives 
 

             (19) 

 
Using Eqs. (12) and (14), Eq. (19) can be simplified into integral equation in 𝜆+ as below 

 

                 (20) 

 
𝜆+ in Eq. (20) is solved numerically using Regula-Falsi method whereas the integrals is evaluated via 
Simpson’s 3/8 rule. Once 𝜆+ is known, 𝜆, can be determined using Eq. (14). According to Gill and 
Sankarasubramanian [12], the solution of Eq. (6) is computed as a series expansion and is displayed 
as 
 

                    (21) 
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where 𝐶. is the mean concentration, 𝑓5  is dispersion function and a new axial coordinate moving 
with the average velocity is 𝑧+ = 𝑧 − 𝑢.𝑡. The distribution of 𝐶. is diffusive as the time starts and 
thus, the GDM as appropriate functions of time t is given as 
 

                                   (22) 

 
where 𝐾5(𝑡) is the dispersion coefficient. Substituting Eq. (21) into Eq. (6) and using Eq. (22) yields 
the series expansion. By equating the coefficients of 𝜕5𝐶. 𝜕𝑧+5⁄  and let 𝑓+(𝑟, 𝑡) = 𝑓+2(𝑟) + 𝑓+6(𝑟, 𝑡), 
where 𝑓+2 is the steady-state and 𝑓+6 is the unsteady state, the variable separation method and Bessel 
function can be used to solve the transient state, 𝑓+6(𝑟, 𝑡) of the dispersion function subject to the 
conditions 𝑓+6(𝑟, 0) = −𝑓+2(𝑟) and 𝜕𝑓+6 𝜕𝑟⁄ = 0. The solution 𝑓+6(𝑟, 𝑡) is numerically computed 
using Simpson’s 3/8 rule and presented as 
 

                                   (23) 
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with 𝐽!, 𝐽+, 𝑌! and 𝑌+ indicate the Bessel functions for first and second kind of order zero and one, 
respectively. By substituting Eq. (21) into the transport equation Eq. (6) yield a partial differential 
equation for mean concentration as below 
 

                (27) 

 
Substituting Eq. (22) in Eq. (27) and rearranging terms yields 
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              (28) 

 
For 𝑗 = 1, 2, …., we equalize 𝜕5𝐶. 𝜕𝑧+

7Q  to zero to obtain the infinite system of partial differential 
equations as below  
 

                   (29) 

 

                  (30) 

  

              (31) 

 
for 𝑗 = 1, 2, …. with 𝑓! = 1.  

By multiplying Eqs.(29), (30) and (31) with 𝑟 followed by integrating the result from k to 𝑅(𝑧) 
imply   
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The dispersion coefficient 𝐾,(𝑡) is an indicator to measure the effectiveness of the solute 

dispersion in the blood flow. Ramana et al. [20] and Dash et al. [21] evaluated the overall reduction 
in solute dispersion due to the fluid yield stress at a constant pressure gradient by subtracting 1 𝑃𝑒,⁄  
and multiplying 192 to Eq. (33) resulting to  
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3. Results and Discussion 
3.1 Validation 
 

The effect of varying catheter radius, power law index, and yield stress on the velocity profile and 
dispersion coefficient of solute is analysed, with the following range of parameters: 𝑘:	0.1 −
0.3, 𝜃:	0.1 − 0.3,	and 𝑛:	0.75 − 2	[13,22]. The results and data were generated for both comparison 
and validation purposes using the Mathematica software. Figures 2 (a), 2 (b) and 2 (c) confirmed that 
the steady dispersion function 𝑓+2, unsteady dispersion function 𝑓+6 and dispersion function 𝑓+ of 
solute obtained in this study is comparable with the findings of Jaafar [23]. For validation purposes, 
𝑘 and 𝛿 was set to zero while the geometry of the stenosed artery, R(z) was set to one to resemble 
fluid without stenosis and catheter. 
 

 
 

(a) (b) 

 
(c) 

Fig. 2. The parameters are fixed at 𝑛 = 0.95, 𝛽 = 0.1, 𝑅(𝑧) = 1, 𝛿 = 0, 𝑘 = 0  and 𝜃 = 0.1 (a) 
steady dispersion function 𝑓!", (b) unsteady dispersion function 𝑓!# with 𝑡 = 0.1 and (c) dispersion 
function 𝑓! with 𝑡 = 0.1 

 
3.2 Velocity  
 

It is crucial to ensure drug is quickly and efficiently dispersed as soon as possible in order to cure 
relevant disease. In this case, blood velocity will play a vital role in this direction as it influences the 
convection and dispersion coefficient [24]. Figure 3 (a)  illustrates  the variation in velocity 
distribution with different catheter radius when 𝑝8 = 1, θ	 = 	0.1, 𝑛 = 0.95, 𝑙! = 3, 𝑑 = 2, 𝑧 = 4 and 
𝛿 = 0.01. In the case of constant yield stress, increase in catheter radius will result to decrease in 
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axial velocity because of the reduction in annular flow in the area between catheter wall and arterial 
wall. 

From the velocity distribution recorded by various fluids in Figure 3 (b), we can see that highest 
velocity is recorded by power law fluid compare with fluids having yield stress; for example, for 𝑛 =
0.95, power law fluid velocity is higher than Newtonian fluid when 𝑛 = 1, θ = 0. However, for 
specific values of k and θ, improvement in n results to lessen velocity when 𝑝8 = 1, 𝑙! = 3, 𝑑 = 2, 𝑧 =
4 and 𝛿 = 0.01. Comparing between H-B fluid and Bingham fluid under a similar yield stress, it is 
shown that as power law index increases from 𝑛 = 0.95 to 𝑛 = 1, the axial velocity slightly 
decreases. Bessonov et al. [25] reported that the erythrocyte concentration is higher near the axis, 
whereas the platelets are concentrated near the wall. Sankar and Hemalatha [13] stated that results 
of velocity distribution discovered by Dash et al. [21] for Casson fluid are significantly lesser compared 
to H-B fluid.  
 

             
                        (a)                  (b) 

Fig. 3. Variation of the velocity distribution when 𝑝" = 1, 𝛿 = 0.01, 	𝑙$ = 3, 𝑑 = 2 and 𝑧 = 4 for 
(a) different catheter radius 𝑘 with 𝑛 = 0.95 and 𝜃 = 0.1  (b) different fluids with 𝑘 = 0.1 

 
3.3 Dispersion Coefficient 
 

Dispersion coefficient 𝐾,(𝑡) explains the overall dispersion process in terms of simple diffusion 
process  as a function of time. The results when 𝑘	 = 	0	and 𝜃 = 0 reduce to those of [12]. Figure 4 
(a) illustrates the variation of dispersion coefficient over time 𝑡 for various catheter size k when 𝑛 =
0.95, 𝑝2 = 1, 𝜃 = 0.1, 𝛿 = 0.01, 𝑙! = 3, 𝑑 = 2 and 𝑧 = 4. It is observed that with an increase in the 
catheter size from 𝑘 = 0.1,0.15, 0.2, 0.25	to 0.3, the dispersion coeffficient reduces significantly. As 
the catheter size increase, the annular gap between stenosed arterial wall and catheter wall 
decreases because reduction in annular gap hampers dispersion process. The same behaviour was 
also noticed by Rao and Desikachar [26] for a Newtonian fluid. 

Figure 4 (b) shows the variation of dispersion coefficient over time 𝑡 for various power law index 
n when 𝑝2 = 1, 𝜃 = 0.1, 𝑘 = 0.1, 𝛿 = 0.01, 𝑙! = 3, 𝑑 = 2 and 𝑧 = 4. The dispersion coefficient of the 
solute diminish as the power law index n increases. As mentioned by Hussain et al. [27], the power-
law index represents the apparent whole blood viscosity. Power law index plays an important role to 
control viscosity and velocity of a fluid. Physically, the viscosity of the fluid increases as the power-
law index increases, hence blood travels faster along the axial distance. When the viscosity increases 
in the blood flow, the solute movement becomes slower, and hence, the dispersion coefficient 
decreases.  
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Figure 4 (c) elucidates the variation of dispersion coefficient over time 𝑡 for various yield stress 𝜃 
when 𝑝2 = 1, 𝑛	 = 	0.95, 𝑘	 = 	0.1, 𝑙! = 3, 𝑑 = 2, 𝑧 = 4 and 𝛿 = 0.01. The dispersion coefficient 
decreases significantly as 𝜃 increases from 𝜃 = 0, 0.05, 0.1, 0.15 and 0.2. At 𝑡 = 0.4, the dispersion 
coefficient reaches a steady-state of diffusion when 𝐾,(𝑡) = 0.083, 0.0080, 0.0070, 0.0065 and 
0.0063, respectively with an increase in 𝜃. The dispersion coefficient rises rapidly from 𝑡 = 0 to 0.2, 
then slowly from 𝑡 = 0.2 to 0.4 and becomes almost constant from 𝑡 = 0.4 to 0.5. It can be seen that 
the dispersion coefficient 𝐾,(𝑡) changes quickly for short time scale but it does not change much for 
large time scale. Specifically for Newtonian fluid (𝜃 = 0, 𝑛 = 1), it attains steady-state at time t of 
around 0.5. Due to yield stress, time recorded will be lower because yield stress corresponds to the 
non-Newtonian nature of the fluid where improvement in yield stress equals to higher blood 
viscosity. Apart from that, yield stress is also related to the width of the plug region where 
improvement in said width will improve yield stress as portrayed in Eq. (14). 

 

  
        (a)          (b) 

 
       (c) 

Fig. 4. Variation of dispersion coefficient 𝐾% over time 𝑡 when 𝑝" = 1, 𝛿 = 0.01, 	𝑙$ = 3, 𝑑 = 2 and 
𝑧 = 4 for (a) different catheter radius 𝑘 with 𝑛 = 0.95 and 𝜃 = 0.1  (b) different power law index 
with 𝑘 = 0.1 and 𝜃 = 0.1  (c) different yield stress with 𝑛 = 0.95 and 𝑘 = 0.1 
 

4. Conclusion 
 

The present study investigated the influence of catheter radius, power law index, and yield stress 
of the fluid on the solute dispersion process in the cardiovascular system. The important findings are 
outlined below: 
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• Upon inserting a catheter into the lumen of the artery, the presence of a plug flow region 
results in the production of two yield plane locations; 

• The velocity reduces following an increase in the yield stress, catheter size, and power law 
index. The dispersion coefficient exhibits a same behaviour as the aforementioned 
parameters ascend considerably;  

• The dispersion coefficient exhibits two distinctive behaviours which are linear and non-
linear behaviour. 

Since this model did not consider the flow pulsatility and the porosity of the arterial tissue, hence, 
future researchers are recommended to extend this study. 
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