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The effect of the Caputo fractional derivative in unsteady boundary layer Casson fluid 
flow in an accelerated microchannel is investigated. In the presence of thermal 
radiation, the partial differential equations that governed the problem are studied. 
Using appropriate dimensionless variables, fractional partial differential equations are 
translated into dimensionless governing equations. The equations are then 
transformed into linear ordinary differential equations and solved analytically using 
the Laplace transform technique. These modified equations are then solved using the 
proper method, and the result is obtained in the form of velocity and temperature 
profiles using the Zakian’s explicit formula approach. The influence of essential physical 
parameters on velocity and temperature profiles is investigated using graphical 
diagrams created with Mathcad software. It is found that the velocity and temperature 
profile increase as fractional parameter, and thermal radiation parameter increase. As 
Prandtl number increase, both profiles are decreasing. This result is crucial for 
understanding the fractional system of Casson fluid in microchannel. 
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1. Introduction

Fractional calculus has existed for long time, even longer than calculus as according to Khalil et 
al., [1] where it can be divided into four phases. The first period is from 165 to 1975. In compliance 

with Delkhosh [2], the notation 
n nd y dx has been invented by Leibnitz. Subsequently, after seeing 

the notation, L’Hospital raise an issue if the notation is 
1 .

2  Hence, Leibnitz did reply that this appears 
to be a paradox from which a beneficial conclusion can be reached one day, as reported by 
Katugampola [3]. The use of fractional derivatives has offered more general and accurate models of 
a system than classical models. Ray et al., [4] have emphasized many studies on fractional derivatives 
have been produced to clarify their importance and diverse applications including De Oliveira and 
Vaz [5], Yang [6] and Mu’lla [7]. Caputo was the first to use the Laplace transform with the typical 
initial condition and create a fractional operator from the convolution product [8]. The difficulty of 
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the unusual initial condition with no physical meaning and difficult to compute was solved with this 
first step since its kernel is singular. Many prior studies have looked into the Caputo fractional 
derivative operator as conducted by Reyaz et al., [9] Saqib et al., [10], Ramzan et al., [11], Sheikh et 
al., [12] and Shahrim et al., [13]. 

Non-Newtonian fluid is a type of fluid that does not obey Newton’s law. Casson fluid is the most 
popular fluid among all type of non-Newtonian fluid. It is said to be a shear thinning liquid, exhibiting 
infinite viscosity at zero shear stress. Moreover, when the yield stress imposed to the fluid is greater 
than the shear stress, the fluid behaved as a solid. Whereas, when the shear stress is greater than 
the applied yield stress, the fluid starts to flow. Toothpaste, blood, and jelly are examples of Casson 
fluid. Casson fluid have a significant application in broad area such as pharmaceutical, biomechanics, 
and cosmetics as reported by previous researchers. Khalid et al., [14]. Saqib et al., [15], Mahantesh 
et al., [16], and Gudekote and Choudhari [17] have conduct some research that has been done 
investigating on Casson fluid.  

Many academics are currently interested in the use of fluid problems in microdevices because of 
their importance in real-world challenges. Microfluidics is defined as the flow of fluids and gases in 
single or multiple phases through microdevices created using Micro Electromechanical Systems 
(MEMS) technology in an engineering environment as claim by Tabeling [18]. Microducts, 
micropumps, and microvalves are examples of MEMS devices that include fluid flows, according to 
Gal-el-Hak [19]. The application of microchannel can be seen has been utilised in the automotive, 
robotics, and telecommunications industries. Some microchannel investigations are also described 
in research carried out by Cao et al., [20], Phu et al., [21], and Joonabi and Kotnukar [22]. 

The convection flow of Casson fluid through an accelerated microchannel with Caputo fractional 
derivative has not been addressed yet, according to literature surveys. Thermal radiation is also being 
considered in order to increase the understanding of Casson fluid convective flow. As a result, the 
goal of this paper is to use the Laplace transform method to establish the exact solutions of 
convective flow of fractional Casson fluid through an accelerated microchannel. The effect of 
numerous parameters on fluid flow is analysed and discussed, including the Casson fluid parameter, 
fractional parameters, and Prandtl number.  
 
2. Problem Definition  
 

An unsteady free convection flow of an unidirectional and incompressible Casson fluid through 
an accelerated microchannel is studied. Both the fluid and the microchannel are initially at rest with 

a uniform temperature oT  (ambient temperature). The microchannel begins to accelerate in its plane 

at time 0,t   along with a velocity ,At  where the constant A  is the plate’s acceleration. The plate 

temperature is also raised to wT (wall temperature), and then kept constant. The momentum and 

energy equations take the following forms: 
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subject to suitable initial and boundary conditions. 
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where  , ,u y t   , ,T y t  ,  ,  ,g  ,T  ,  ,pc  ,k  ,rq  are the velocity of fluid, temperature of fluid, 

kinematic viscosity, parameter of Casson fluid, gravitational acceleration, thermal expansion 
coefficient, density of fluid, specific heat at constant pressure, thermal conductivity and thermal 
radiation parameter, respectively. Thermal radiation is optically thick fluid in one space coordinate 
with y  in this research. It is written in the Rosseland approximation [23]:  
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where   is the Stefan-Boltzmann constant and 1k  is the mean absorption coefficient. 4T  is linearized 

about oT and the other higher-order terms are ditched. Hence, 4T  can be reduced to  

 
4 3 44 3o oT TT T     (5) 

 

Therefore, the energy equation becomes  
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Introducing the dimensionless variables as used by Khan et al., [13], 
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By replacing variables in Eq. (7) in Eqs. (1), (3) and (6), the governing equations as well as the 
boundary and initial conditions, reduce to non-dimensional equations. Then, by using Caputo 
fractional, where the Caputo derivative operator is 
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The fractional dimensionless momentum and energy equations can be written to  
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where the fractional parameter is denoted by  . The equations are subjected to  
 

     

     

,0 0, 0, 0, 1, ,

,0 0, 0, 0, 1, 1,

v v v   

     

  

  
   (11) 

 

Here, ,o  ,Gr  ,R  and Preff  are the parameter of dimensionless Casson fluid, thermal Grashof 

number, parameter of radiation and effective Prandtl number, respectively. For the simplicity,   is 

set at 1.    

 
3. Solution of the Problem 
 

The dimensionless fractional Eqs. (9) and (10) are solved using Laplace transform method and are 
transform into linear ordinary differential equations. Hence, it yields 
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Whereas the boundary conditions after applying the Laplace transform method are as follows: 
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Solving Eqs. (12) and (13) with boundary conditions Eq. (14) using the appropriate approach, obtain  
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4. Inverse Laplace Transform 
  

The inverse Laplace transform is computed numerically using Zakian’s explicit formula approach 
since the obtain functions are explicit functions. By Zakian and Littlewood [24], the algorithm-based 
technique of Zakian is outlined by  
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where jK  and j  are constants that can be either real or complex conjugate pairs. Referring to 

Halsted and Brown [25] for the lists values for jK  and .j  

 
5. Graphical Results 
 

The effects of   on the fluid temperature are depicted in Figure 1(a). As   increases, the fluid 
temperature increases, and maximum curves obtained at 1.   In comparison to the fractional 
Casson fluid model, the properties of the classical have a greater temperature. This occurred since a 
higher value of   will aids in the strengthening of buoyant forces, which raises the thermal boundary 

layer, which enhances the temperature profile. The temperature profiles with varied values of Pr  

and R are depicted in Figures 1(b) and 1(c), respectively. As shown, an increase in Pr  has resulted 
in a drop in the temperature profile. Increases in ,R  on the other hand, have an opposing influence 

on temperature profiles, which show a rising trend. 

  

(a) Variation of temperature with different    (b)  Variation of temperature with different Pr  

 

(c) Variation of temperature with different R  

Fig. 1. Behaviour of T  for different values of pertinent parameters 
 

In Figure 2(a), as   rises, so does the velocity distribution. The classical velocity distribution is at 
its maximum velocity distribution when the thickness of the momentum boundary layer is smaller 
than the thickness of the thermal boundary layer at 1.   It is seen in Figure 2(b) that the fluid 
velocity has decreased due to the incremental values of Pr.  Because it quantifies the ratio of viscous 

and thermal forces, Pr  has a significant impact on fluid velocity. While Figure 2(c) demonstrate that 

0 0.5 1
0

0.5

1

α=0.2

α=0.4

α=0.6

α=0.8

α=1.0

T
(y

,t
)

0 0.5 1
0

0.5

1

Pr=12

Pr=14

Pr=16

Pr=18

Pr=20

T
(y

,t
)

0 0.5 1
0

0.5

1

R = 1.0

R = 1.5

R = 2.0

R = 2.5

R = 3.0

T
(y

,t
)



CFD Letters 

Volume 14 Issue 8 (2022) 12-19 

17 
 

when o  gets larger, the fluid’s velocity tends to decrease. Due to the physical effect of ,o  in which 

a greater o  value increases viscous forces while decreasing thermal forces. Then, the velocity of 

fluid will drop. The velocity profiles rise as Gr  increases, as shown in Figure 2(d). The buoyant force 
is influenced positively by the value of .Gr  It has a considerable impact on fluid velocity. The velocity 

of fluid increases as R  increases in Figure 2(e). The larger the convection effect, which results in an 
increase in the velocity profile, the higher the value of .R  

  

(a) Variation of temperature with different   (b) Variation of temperature with different Pr  

  
(c) Variation of temperature with different o  (d) Variation of temperature with different Gr  

 
(e) Variation of temperature with different R  

Fig. 2. Behaviour of v  for different values of pertinent parameters 

 
6. Conclusion 

 
The application of Caputo fractional derivative to the convective flow of Casson fluid in an 

accelerated microchannel with thermal radiation is investigated in this article. For velocity and 
temperature profiles, the exact solution has been derived. The results from this research are: 
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i. When the values of ,  and R  increase, the velocity and temperature profile increase. 

ii. As the Pr  value increases, the viscosity force increases, lowering the temperature and 
velocity profiles.  

iii. The velocity profile has shown a declining behaviour as o has been increased whereas the 

velocity profile increases as Gr  increases. 
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