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ABSTRACT 

Fully homomorphic encryption (FHE) is a special class of encryption that 

allows performing unlimited mathematical operations on encrypted data without 

decrypting it. There are symmetric and asymmetric FHE schemes. The symmetric 

schemes suffer from the semantically security property and need more performance 

improvements. While asymmetric schemes are semantically secure however, they pose 

two implicit problems. The first problem is related to the size of key and ciphertext 

and the second problem is the efficiency of the schemes. This study aims to reduce the 

execution time of the symmetric FHE scheme by enhancing the key generation 

algorithm using the Pick-Test method. As such, the Binary Learning with Error lattice 

is used to solve the key and ciphertext size problems of the asymmetric FHE scheme.  

The combination of enhanced symmetric and asymmetric algorithms is used to 

construct a multi-party protocol that allows many users to access and manipulate the 

data in the cloud environment. The Pick-Test method of the Sym-Key algorithm 

calculates the matrix inverse and determinant in one instance requires only 𝑛 − 1 extra 

multiplication for the calculation of determinant which takes 𝑂(𝑁3) as a total cost, 

while the Random method in the standard scheme takes 𝑂(𝑁3) to find matrix inverse  

and 𝑂(𝑁!)  to calculate the determinant which results in 𝑂(𝑁4) as a total cost. 

Furthermore, the implementation results show that the proposed key generation 

algorithm based on the pick-test method could be used as an alternative to improve the 

performance of the standard FHE scheme. The secret key in the Binary-LWE FHE 

scheme is selected from {0,1}𝑛  to obtain a minimal key and ciphertext size, while the 

public key is based on learning with error problem. As a result, the secret key, public 

key and tensored ciphertext is enhanced from  log𝑞 , 𝑂(𝑛2log2𝑞) and ((𝑛 +

1)⌈log 𝑞⌉)
2
log 𝑞  to  𝑛,  (𝑛 + 1)2log 𝑞  and (𝑛 + 1)2log 𝑞  respectively.  The Binary-

LWE FHE scheme is a secured but noise-based scheme. Hence, the modulus switching 

technique is used as a noise management technique to scale down the noise from 𝑒 and 

𝑐 to 𝑒/𝐵 and 𝑐/𝐵 respectively thus, the total cost for noise management is enhanced 

from 𝑂(𝑛3log2𝑞)  to 𝑂(𝑛2log 𝑞) . The Multi-party protocol is constructed to support 

the cloud computing on Sym-Key FHE scheme. The asymmetric Binary-LWE FHE 

scheme is used as a small part of the protocol to verify the access of users to any 

resource. Hence, the protocol combines both symmetric and asymmetric FHE schemes 

which have the advantages of efficiency and security. FHE is a new approach with a 

bright future in cloud computing. 
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ABSTRAK 

Penyulitan homomorfik penuh (FHE) merupakan kelas khas penyulitan yang 

membolehkan pelaksanaan operasi matematik yang tidak terhad pada data yang 

disulitkan tanpa menyahsulitkannya. Terdapat skema (FHE) simetri dan tidak simetri. 

Skema simetri tiada ciri keselamatan semantik dan memerlukan lebih banyak 

penambahbaikan prestasi. Walaupun skema tidak simetri adalah selamat tetapi ia 

mempunyai dua masalah tersirat. Masalah pertama berkaitan dengan saiz kekunci dan 

teks sifer manakala masalah kedua adalah kecekapan skema. Kajian ini bertujuan 

untuk mengurangkan masa pelaksanaan skema (FHE) simetri dengan meningkatkan 

algoritma penjanaan kekunci menggunakan kaedah Pilih-Uji. Oleh itu, Pembelajaran 

Perduaan dengan Kekisi Ralat digunakan untuk menyelesaikan masalah saiz kekunci 

dan teks sifer skema (FHE) tidak simetri.  Gabungan algoritma simetri dan tidak 

simetri yang dipertingkatkan digunakan untuk membina protokol berbilang pihak yang 

membolehkan ramai pengguna mengakses dan memanipulasi data dalam persekitaran 

awan.  Kaedah Pilih-Uji bagi algoritma Sym-Key mengira balikan matriks dan penentu 

dalam satu tika dan hanya memerlukan 𝑛 − 1 pendaraban tambahan untuk pengiraan 

penentu yang menggunakan 𝑂(𝑁3) sebagai kos keseluruhan, manakala kaedah Rawak 

dalam skema standard menggunakan 𝑂(𝑁3) untuk mencari balikan matriks dan 𝑂(𝑁!) 

untuk mengira penentu yang terhasil dalam 𝑂(𝑁4) sebagai kos keseluruhan. 

Tambahan pula, keputusan pelaksanaan menunjukkan bahawa algoritma penjanaan 

kekunci yang dicadangkan berdasarkan kaedah Pilih-Uji boleh digunakan sebagai 

alternatif untuk meningkatkan prestasi skema FHE standard. Kekunci rahsia dalam 

skema Perduaan-LWE FHE dipilih daripada {0,1}𝑛  untuk mendapatkan kekunci 

minimum dan saiz teks sifer, manakala kekunci awam berdasarkan pada pembelajaran 

dengan masalah ralat. Hasilnya, kekunci rahsia, kekunci awam dan teks sifer bertensor 

masing-masing dipertingkatkan daripada  log𝑞, 𝑂(𝑛2log2𝑞) dan ((𝑛 +

1)⌈log 𝑞⌉)
2
log 𝑞 kepada  𝑛,  (𝑛 + 1)2log 𝑞 dan (𝑛 + 1)2log 𝑞. Skema Perduaan-LWE 

FHE merupakan satu skema berdasarkan hingar tetapi selamat. Oleh itu, teknik 

pertukaran modulus digunakan sebagai teknik pengurusan hingar untuk menurunkan 

skala hingar masing-masing daripada 𝑒 dan 𝑐 kepada 𝑒/𝐵 dan 𝑐/𝐵 dan kos 

keseluruhan bagi pengurusan hingar dipertingkatkan daripada 𝑂(𝑛3log2𝑞)  kepada 

𝑂(𝑛2log 𝑞) . Protokol Berbilang pihak dibina untuk menyokong pengkomputeran 

awan pada skema Sym-Key FHE. Skema Perduaan-LWE FHE tidak simetri digunakan 

sebagai bahagian kecil protokol tersebut untuk mengesahkan akses pengguna kepada 

mana-mana sumber. Oleh itu, protokol ini menggabungkan kedua-dua skema FHE 

simetri dan tidak simetri yang mempunyai kelebihan kecekapan dan keselamatan. FHE 

merupakan satu pendekatan yang masih baru dengan masa depan yang cerah dalam 

pengkomputeran awan. 
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INTRODUCTION 

1.1 Overview  

In cryptography, encryption is the method of obscuring information to make it 

illegible without specialized knowledge called the key. This is usually done for privacy 

and typically for confidential communications. Encryption systems permit clients to 

secure classified in their information, for instance, healthy or monetary records 

whether the information is in the storage, client’s PC, cloud, or in transit. Cryptography 

is used in the cloud to employ encryption techniques for protecting data that is utilized 

or saved in the cloud. Cryptography permits users to reach distributed cloud services 

conveniently and securely. Using encryption in the cloud environment preserves users' 

sensitive data without affecting the data transferring process and increases the security 

of cloud computing. 

Homomorphic encryption is a particular class of encryption presented by 

Rivest et al. (1978) that allows performing mathematical operations on the ciphertexts 

without decrypting all of them, essentially, with no knowledge of the decryption key. 

In the last several years, homomorphic encryption systems are actually studied and 

analysed thoroughly given that they have grown to be increasingly more important in 

several cryptographic protocols such as lottery protocols, e-voting protocols, 

anonymity, security, as well as electronic auctions. For instance, given ciphertexts 𝐶 =

𝐸𝑛𝑐𝑘(𝑃) and 𝐶′ = 𝐸𝑛𝑐𝑘(𝑃
′), an additively homomorphic encryption scheme permits 

to add 𝐶 and 𝐶′ to obtain 𝐸𝑛𝑐𝑘(𝑃 + 𝑃
′). This kind of encryption scheme is enormously 

valuable in the model of intricate cryptographic systems and protocols. For example, 

an electronic voting scheme might accumulate encrypted votes 𝐶𝑖 = 𝐸𝑛𝑐𝑘(𝑃𝑖) in which 

each and every vote 𝑃𝑖 is possibly 0 or 1, to obtain the final encrypted result 

𝐶 = 𝐸𝑛𝑐𝑘(𝑃1 +⋯+ 𝑃𝑛). The result may be decrypted by an appropriate authority 

which has the decryption key and the ability to publish the final result. 
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Homomorphic cryptosystems are ones where mathematical operations on the 

encrypted data have normal effects as on the original data. The symmetric cipher such 

as Data Encryption Standard (DES) which discovered in Standard (1977) and 

Advanced Encryption Standard (AES) in Standard (2001) are not homomorphic. 

Rivest–Shamir–Adleman (RSA)'s homomorphism is proposed by Rivest et al. (1978) 

which performs multiplication operation on the ciphertexts and reflected in the 

plaintext. Some algorithms that are homomorphic concerning to addition have been 

known since the 1980s but fully homomorphic under both multiplication and addition 

and still secure discovered by (Gentry, 2009).  A homomorphic scheme that permits 

homomorphic computation of only one operation (either multiplication or addition) on 

ciphertexts is called a partial homomorphic scheme. There are several efficient 

partially homomorphic cryptosystems such as RSA Rivest et al. (1978) and ElGamal 

encryption system (ElGamal, 1985). 

1.2 Problem Background  

The scheme proposed in Gentry (2009) is the first fully homomorphic 

encryption (FHE) scheme that permits any person to manipulate the ciphertexts 

without having an ability to decrypt it. Gentry utilized mathematical object referred to 

as an ideal lattice. His public key scheme possesses several algorithms Key 

Generation, Encryption, Decryption as well as an extra algorithm referred to as 

Evaluation algorithm that requires 𝑝𝑘 which represents the public key, an operation 

𝛹 that perform on the ciphertexts as well as ciphertexts (c1 , … , ct) as inputs, it 

produces an another ciphertext c. The complexity of Key Generation, Encryption, 

Decryption and Evaluation algorithms ought to be polynomial in security parameter ⋋ 

along with the 𝑐′𝑠 dimensions. 

Regrettably, Gentry's FHE scheme is totally impractical, and both the 

ciphertext size and the complexity of the encryption and decryption calculations 

become colossally with the size of operations performed on the ciphertext. The authors 

of Smart and Vercauteren (2010) tackled with this issue by proposing a fully 

homomorphic encryption scheme which has both generally small key and ciphertext 

http://en.wikipedia.org/wiki/Homomorphic_encryption#Unpadded_RSA
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size by utilizing the little two component representation 〈𝛼, 𝑝〉, prime 𝑝 and integer 

number 𝛼 modulo 𝑝, rather than the bigger Hermite Norm Form (HNF) representation 

that utilized by Gentry in the first FHE scheme. They followed the same way of 

Gentry's scheme by utilizing the principal of ideal lattices and in addition, require a 

prime number to represent the lattice determinant.  In particular, the key-generation 

algorithm executed more than once to picks irregular key goals until the comparing 

lattice section has a prime determinant. They could actualize the basic somewhat 

homomorphic scheme and still they were not ready to support sufficiently extensive 

parameters to make Gentry's squashing process works. Accordingly, they couldn't get 

a bootstrappable or a fully homomorphic scheme. The FHE scheme that is presented 

in Gentry and Halevi (2011) introduced the improvements of the basic Gentry’s work. 

They proposed various enhancements that permit all stages of the FHE scheme to be 

executed, including the bootstrapping usefulness but still needs more improvements.  

Most of the schemes are stated earlier determined by lattice problems, to assist 

the simplicity functionality of the fully homomorphic scheme, the authors of  Van Dijk 

et al. (2010b) offered a FHE scheme based on integers as opposed to the lattice. The 

security of the scheme is dependent upon the hardness of choosing an estimate integer 

Greatest Common Divisor Problem (GCD). The most important open issue of the 

scheme is always to enhance the performance. 

Until recently, the majority of FHE schemes followed the same direction of 

Gentry's original construction. The original construction of Gentry divided into three 

steps to obtain the FHE:  

Step1 Somewhat homomorphic encryption (SWHE): Construct a SWHE that 

restricted by a limited number of addition and multiplication operation and can 

evaluate low-degree polynomials.  

Step2 Bootstrapping: The SWHE scheme can handle circuits up to a certain 

depth 𝑑. (Plus, an additional operation), apply Gentry's alteration to get an equalized 

FHE scheme. Bootstrapping refreshes a ciphertext by functioning the decryption 
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operation about it homomorphically, utilizing an encrypted hidden key which is 

provided in the public key by means of re-encryption algorithm. 

Step 3 Squashing: Squash the decryption operation of the SWHE scheme, until 

decryption could be stated as a polynomial of degree minimal enough to be taken care 

of within the homomorphic capability of the SWHE scheme. 

Though Gentry’s invention Gentry (2009) gives a solution, but it is very 

important to develop improvements of Gentry's and related schemes to obtain more 

practical and feasible FHE schemes. The primary problems of using FHE schemes 

which based on the original Gentry’s work are the size of the public key, multiple keys 

are used in the process of the scheme, the size of ciphertext is growing after 

computational operations as well as the accumulation of the noise. However, the 

delegation of computation is the main application of fully homomorphic encryption 

due to the limitation or lack of the resources at the user's side. The majority of the 

schemes have intensive computations which make the schemes impractical (Moore et 

al., 2014). Reducing key sizes to a controllable level considered an open problem 

(Martins et al., 2018). The procedure of the fully homomorphic scheme requires, in 

any case, three keys (encryption key, decryption key, and evaluation key). 

The main issue concerns to improve the fully homomorphic schemes with 

specialized features, such as efficiency, light-weight, noise-free, fast, short key size, 

multiparty as well as semantic security property. Majority of applications such as 

private information retrieval PIR and e-voting do not need to use fully homomorphic 

schemes, but only use somewhat or partial homomorphic schemes. Somewhat 

homomorphic encryption scheme (SWHE) supports only a limited number of 

operations homomorphically.  While the partial homomorphic scheme supports either 

addition or multiplication operations but not both. Thus, these schemes are restricted 

to limited applications, and cannot be generalized or extended to all application 

categories. Fully homomorphic encryption is used in cloud computing applications and 

allows performing unlimited number of operations on the encrypted data. 
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There are two types of the FHE cryptosystems, symmetric and asymmetric.  

Symmetric FHE schemes are noise-free, efficient and practically feasible but suffers 

from the semantically security property. Asymmetric FHE schemes are semantically 

secure, noise-based schemes and complex in implementation.  To construct an efficient 

and secure FHE for cloud, the advantages of symmetric and asymmetric schemes are 

combined.  Xiao et al. (2012) introduced one of the best symmetric FHE schemes. 

However, this scheme needs improvements to enhance its efficiency. The efficiency 

means the execution time takes to implement the FHE algorithms. Brakerski (2012) 

introduced asymmetric FHE scheme based on LWE Lattice problem. Ciphertext size 

in this scheme grows with a degree of function 𝑓 that performs on a ciphertext. When 

adding or multiplying ciphertexts, the noise 𝑒 is increased until it becomes too large 

and decryption is not correct. The scheme uses a high cost bootstrapping technique to 

manage this noise.  

The majority of the existing FHE schemes are asymmetric which use the 

public-key cryptography. Asymmetric FHE scheme has a clear benefit because it 

depends on difficult mathematical problems such as Approximate GCD, Large Integer 

Factorization or Diffie-Hellman problems. Nevertheless, There are some applications 

that by their nature require only the use of symmetric keys and do not need to use the 

public keys in any way. For example, When the user saves his private data on the cloud 

for personal use only, he uses the symmetric scheme with the secret key because he 

does not want to share his data with other parties.  In contrast, there are many 

applications require multi-party sharing, such as computation on securing cloud 

storage using a homomorphic framework in Gupta and Biswas (2018),  utilizing FHE 

to implement secure medical computation in smart cities in Sun et al. (2017), 

outsourced privacy-preserving classification service over encrypted data in Li et al. 

(2018), and using FHE to secure cloud computing in (Jabbar and Najim, 2016). Most 

of the proposed FHE schemes describe the cryptosystems and have not explained the 

area of multi-party sharing. 



6 

1.3 Problem Statement  

Based on the previous studies in the FHE schemes, the symmetric FHE 

schemes suffer from the semantically security property and need more efficiency 

enhancements. Efficiency refers to the execution time, while, asymmetric FHE 

schemes which based on lattice problem are semantically secure but have two 

implicitly problems. First problem related to the size of key and ciphertext. Ciphertext 

size grows with a degree of function 𝑓 that performs on it. When adding or multiplying 

ciphertexts, the noise 𝑒 increases until it becomes too large and decryption is not 

correct, while the second problem is the efficiency of the schemes. The FHE schemes 

are mainly used in the cloud and there is no efficient and secure implementation in this 

area. As a result, the major research question is: 

"How to improve efficient and secure FHE schemes and uses these schemes 

as a basis to costruct a multi-party protocol to allow many users access and 

manipulate data in the cloud or any data center?". 

To solve the major research question, the subsequent questions must be 

answered precisely: 

(a) How to to enhance the efficiency of the key generation algorithm of the 

symmetric key FHE scheme? 

(b) Could Binary-LWE improve the key and tensored ciphertext size of the 

asymmetric key FHE scheme? 

(c) What is the appropriate dealing for accumulated noise after homomorphic 

operation?  

(d) How to construct a multi-party protocol that allows many users access and 

manipulate the data in the cloud using secure and efficient FHE schemes? 
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1.4 Aim of the Research 

This research aims to enhance the efficiency of the fully homomorphic 

encryption schemes based on symmetric and asymmetric encryption and to implement 

these proposed enhanced schemes in the cloud environment to support multi-users 

with access control. 

1.5 Research Objectives 

The goal of this study is to develop and enhance the FHE schemes for cloud 

environment. The enhanced schemes are develped to solve the problems related to the 

efficiency of the key generation algorithms and the noise management of ciphertext 

size after any computational operations and obtain a correct ciphertext. According to 

these problems, the main objectives of this study are: 

(a) To improve the performance of the key generation algorithm of the  Xiao et al. 

(2012) symmetric FHE scheme using the Pick-Test method in order to reduce 

the execution time, which is more efficient and practically feasible. 

(b) To produce the minimal key size of the key generation algorithm using the 

Binary-LWE lattice problem; manage the noise and ciphertext size after any 

computational operation in order to obtain a correct ciphertext of the Brakerski 

(2012) asymmetric FHE scheme; and ensuring that key is still secure. 

(c) To construct a protocol for multi-party cloud application using the combination 

of the proposed symmetric and asymmetric FHE key generation algorithms. 

1.6 Scope of the Study 

This study is concentrated on the applied sciences, mathematical analysis and 

the substantial theoretical optimization of the key generation algorithms of the FHE 

schemes. The scope of this study is limited to:  
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(a) Sym-FHE uses 4- dimension Matrix ring modulo N to represent the dataset or 

inputs of the key generation, encryption as well as decryption algorithms.  

(b) Binary-LWE FHE scheme is based on lattice-based theory and uses Big O 

notation to evaluate the performance.  

(c) CloudSim simulation is used to evaluate the performance of the proposed MP-

Protocol. 

1.7 Significance of Study 

In this study, the combination of the symmetric and asymmetric FHE is 

proposed to construct an efficient and secure homomorphic cryptosystem for cloud 

computing. The key generation algorithm is modified using the proposed Pick-Test 

method to enhance the efficiency of the Xiao et al. (2012) symmetric scheme. 

Therefore, the key generation algorithm based on the Binary-LWE lattice problem is 

proposed to enhance Brakerski (2012) scheme, which is a noise-based FHE using the 

asymmetric key. The noise is controlled using modulo switching technique. The 

proposed algorithms are efficient and practically feasible and are used to construct a 

multi-party protocol to allow many users to access and manipulate the data in the 

cloud.   

1.8 Research Contribution 

The contributions of this study are as follows: 

(a) Improving the key generation algorithm of the Xiao et al. (2012) scheme and 

make it more efficient using the Pick-Test method.  

(b) Improving the key generation algorithm on Brakerski (2012)  FHE scheme 

using Binary-LWE lattice-based cryptography problem to produce minimal 
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key size and ensuring that key is still secure and manage the noise of the 

modified scheme using modulus switching technique.  

(c) Construct a multi-party protocol to support cloud computing using the 

proposed Sym-Key and Binary-LWE FHE schemes.  

1.9 Thesis Organization  

Accordingly, to achieve the aforementioned objectives, this thesis is distributed 

within seven chapters. Chapter 2: Literature Review. This chapter presents the 

concepts and the background information and reviews the related works in the area of 

fully homomorphic encryption. This chapter reviews the previous surveys and displays 

the strength and gaps of the previous FHE studies. Chapter 3: Research Methodology. 

This chapter defines the methodology followed in this thesis to achieve the study's 

objectives. A methodology is general rules or principles to solve the research 

problems. It includes the research framework and the steps needed to progress the 

research systematically. It contains the discussion on the research components such as 

the phases, techniques, tools as well as datasets. Chapter 4: Symmetric Key Generation 

Algorithm of fully homomorphic encryption scheme (SYM-KEY). This chapter 

provides the symmetric key generation algorithm (SYM-KEY) base on the pick-test 

method to improve the performance. It provides the evaluation of the encryption and 

decryption algorithms to verify the validity of the proposed algorithm and provides the 

Evaluation of the Performance and security. Chapter 5: Asymmetric key generation 

algorithm based on Binary learning with error lattice problem (Binary-LWE). This 

chapter introduces the optimization method to improve the key generation algorithm 

using Binary learning with error problem and manage the noise using the modulo 

switching technique. Chapter 6: Multi-party Protocol using Sym-Key FHE and Binary-

LWE FHE schemes for the cloud environment. This chapter introduces the multi-party 

protocol with access control based on the proposed symmetric fully homomorphic 

scheme (Sym-Key FHE) and Binary-LWE FHE to allow many users access and 

manipulate the data in the cloud. Chapter 7: Conclusion and Future Work. This chapter 

discusses and highlights the summary, contributions and findings of the research work, 

and it provides suggestions and recommendations for future studies. 
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