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ABSTRACT 

This project is an artificial intelligence model that classify brain tumor MR 

images into three different classes, namely Glioma, Meningioma and Pituitary 

Tumors. The existing method of analysing MRIs is manual classification, which 

suffer from difficulties such as the long time it takes to classify and the accuracy that 

can vary based on the experience of the physicians. The researchers are working on 

classification of MRIs since years, and each of them are competing to get a higher 

accuracy and performance results. However, the competition in this field is widely 

focusing on getting higher accuracy and better performance and trying different 

datasets to get variety of all possible combinations. After doing a successful 

experiment on Alexnet network and reaching an accuracy better than the state of the 

art. After noticing that the research field is full of researches, but no real application 

is applied in the hospitals, it is the time to start thinking practically about moving the 

research one step toward practical side, which is the medical application of this 

problem. In this project, an application is developed for giving multiple opinions 

about MR image of a brain tumor of the three types, helping the physicians with not 

only 2nd opinion, but with 4 different opinions from four different AI entities, 

increasing the accuracy that can be obtained in deciding which tumor is in the image, 

in an easy to use environment with few clicks, making the numbers and technical 

aspect of the AI technology to us as engineers and the solution is simplified as 

possible in the hands of physicians. The pre-trained networks used in the project are 

Googlenet, Alexnet, Mobilenetv2, Resnet101, and the training accuracy obtained 

using the Figshare dataset on all of them are 100%, 97.66%, 100%, 100% 

respectively, and a validation accuracy of 92.27%, 86.87%, 94,34%, and 94.23% 

respectively. 
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ABSTRAK 

Projek ini adalah model kecerdasan buatan yang mengklasifikasikan gambar MR 

tumor otak menjadi tiga kelas yang berbeza, iaitu Glioma, Meningioma dan Tumor 

Pituitari. Kaedah yang ada untuk menganalisis MRI adalah klasifikasi manual, yang 

mengalami kesulitan seperti waktu yang lama untuk mengklasifikasikan dan 

ketepatan yang dapat berbeza-beza berdasarkan pengalaman doktor. Para penyelidik 

berusaha untuk mengklasifikasikan MRI sejak bertahun-tahun, dan masing-masing 

bersaing untuk mendapatkan hasil ketepatan dan prestasi yang lebih tinggi. Walau 

bagaimanapun, persaingan dalam bidang ini banyak difokuskan untuk mendapatkan 

ketepatan yang lebih tinggi dan prestasi yang lebih baik dan mencuba set data yang 

berbeza untuk mendapatkan pelbagai semua kemungkinan kombinasi. Setelah 

melakukan percubaan yang berjaya pada semester lalu di rangkaian Alexnet dan 

mencapai ketepatan yang lebih baik daripada yang terkini. Setelah menyedari 

bahawa bidang penyelidikan penuh dengan penyelidikan, tetapi tidak ada aplikasi 

nyata yang diterapkan di rumah sakit, inilah saatnya untuk mulai berfikir secara 

praktikal tentang memindahkan penyelidikan selangkah ke arah praktikal, yang 

merupakan aplikasi perubatan dari masalah ini. Dalam projek ini, sebuah aplikasi 

dikembangkan untuk memberikan banyak pendapat mengenai gambaran MR tumor 

otak dari tiga jenis tersebut, membantu doktor dengan tidak hanya pendapat ke-2, 

tetapi dengan 4 pendapat yang berbeza dari empat entiti AI yang berbeza, 

meningkatkan ketepatan yang dapat diperoleh dalam menentukan tumor mana yang 

sesuai dengan gambar, dalam lingkungan yang mudah digunakan dengan beberapa 

klik, menjadikan nombor dan aspek teknikal teknologi AI kepada kami sebagai 

jurutera dan penyelesaiannya dipermudah mungkin di tangan doktor. Jaringan pra-

terlatih yang digunakan dalam projek ini adalah Googlenet, Alexnet, Mobilenetv2, 

Resnet101, dan ketepatan latihan yang diperoleh menggunakan set data Figshare 

pada semuanya adalah masing-masing 100%, 97.66%, 100%, 100%, dan ketepatan 

pengesahan 92.27%, 86.87%, 94,34%, 94.23%.   
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INTRODUCTION 

1.1 Problem Background 

1.1.1 Brain Tumor 

There has been an increase in the amount of work on brain tumors in recent years. A 

brain tumor is an irregular mass of tissue where only cells develop and 

uncontrollably grow, seemingly uncontrolled by the processes that regulate normal 

cells. There have been five brain tumor kinds which are Astrocytoma, 

Oligodendroglioma, Ependymoma, Gangliocytoma, and Medulloblastoma. More 

than 150 various brain tumors have been identified, however the primary and 

metastatic tumors are two major brain tumor classes [1]. The primary brain tumor is 

referred to as either benign or non-cancer. The brain tumor Metastatic originates 

from the other part of the body breast or lungs and has spread across the bloodstream 

to the brain. Which are considered malignant or cancerous [2]. Researchers created a 

separate Brain Tumor Identification component in [3] that is named the St Anne-

Mayo classification system. In which tumors are classified determined by the 

presence or absence of four cellular characteristics: nuclear atypia, mitoses, 

proliferation of endothelial cells and necrosis. For instant, grade one brain tumors get 

none of the four cellular characteristics, grade two tumors have only one of the 

characteristics, grade three tumors have two characteristics and Grade IV tumors 

have three or four characteristics[4].  

 

1.1.2 MR Imaging 

Due to its low radiation and high contrast characteristic, MR images are more 

efficient than Computer Tomography (CT) scans. MRIs can distinguish circulating 

blood and ambiguous vascular dysfunctions. Nervous illness may be observed there 
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have been no artefacts that harden beams. MR imaging is done with no ionizing 

radiation MRI 's critical phenomenon is to expose the body to a magnetic field and 

electrify the human body's hydrogen by emission radio frequency pulses, therefore 

the hydrogen nuclei absorb energy and transmit it as an electrical signal since 

stopping the radio signals The atoms emit energy and then return to their preceding 

stage. The Magnetic Resonance Imaging of the brain periods can be classified into 

three groups depending on rest and relaxation: Relaxation Time for longitudinal 

(T1), Transverse Relaxation Time for transverse  (T2) and Fluid Attenuated 

Inversion Recovery (Flair) as seen in Figure 1, while T1 takes long period of time in 

Time to Echo and Repeat time. The time among echo and radio frequency remittance 

signal transmission called time to echo. The Repeat Time (RT) is the length of the 

two consecutive pulse sequences on the same slice of image [2].  

 

Figure 1: (a) T1-weighted, (b) T2-weighted, (c) Flair 

 

 

1.1.3 Manual Classification vs Automatic Classification 

Manually conducting the segmentation of brain MR images is a challenging task, as 

this entails many difficulties. Automatic detection is an important experiment which 

has given the best results. It helped researchers to face the challenges of 

classification of brain tumors. Artificial intelligence one of the most recognized 

techniques. AI is the study of computer systems able to do tasks that require human 

intelligence. AI has various methods. In this paper, a brain tumor was identified from 

MRI images by using deep learning algorithm. Performing the brain MR images 

segmentation manually is a difficult task as there are several challenges associated 
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with it. Radiologist and medical experts spend plenty of time for manually 

segmenting brain MR images, an automatic segmentation of brain MR images is 

needed to correctly segment White Matter (WM), Grey Matter (GM) and 

Cerebrospinal Fluid (CSF),  tissues of brain (as seen in Figure 2) in a shorter span of 

time.  

 

 

Figure 2: a) General Brain MR Image, b) Gray Matter, c) White Matter d) 

Cerebrospinal Fluid [2] 

 

1.1.4 Deep Learning Algorithms for Classification 

Deep learning can be defined as a special type of artificial neural network that bear 

resemblance to human decision making process [5]. Deep learning (DL) models 

provided an interesting trend in machine learning because deep architecture can 

effectively reflect complicated relationships without the need for a large amount of 

nodes [6]. Deep learning methods can be used as they can help in feature selection, 

extraction and can also create new features [5]. Previously the focus was on region-

based tumor segmentation, but these days by the assistance of machine learning 

advancements and deep learning, the paradigm shifted to be in feature extraction and 

classification. This approach is data starving one, and necessitates huge amount of 

data to get to the accuracy needed. In order to address this issue, transfer learning is 

used where the use of already trained network on hundreds of thousands of data 

samples become a practical solution, in which this network creates a knowledge in 

classification that can be fine-tuned to the problem in hand and modified in a way it 

classifies brain tumor i.e. the network is trained on an base dataset called a dataset, 
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and the learned information is transferred to a small dataset (in this case it is the 

brain MR images).  

 

1.1.5 Second Opinion Concept 

According to National Cancer Institute (NCI), second opinion In medicine, is the 

opinion of a doctor other than the patient’s current doctor. The second doctor reviews 

the patient’s medical records and gives an opinion about the patient’s health problem 

and how it should be treated. A second opinion may confirm or question the first 

doctor’s diagnosis and treatment plan, give more information about the patient’s 

disease or condition, and offer other treatment options. [7] 

 

The main idea of this project is to provide multiple second opinions for an MR 

image, giving multiple sources of accurate diagnosis for patients, helping physicians 

to make their minds about the type of tumor in hand with high level of trust. 

 

Doing that is to be done by training multiple high performance networks on brain 

tumor MRIs then classify images using all of them, and read the accuracy and 

percentage of the classification of each of them, and package all of that in an simple 

graphical user interface that is easy to use by doctors and physicians.  

 

1.2 Problem Statement 

Medical diagnosing is one of the most important steps in any medical treatment. One 

of these diagnoses takes place by physicians to identify the type, size and shape of 

brain tumor by analysing the MR images scanned for the patient. However, these 

analysis is time consuming, and subjected to human error in diagnosing the tumor 

types and features due to different quality of images, types of tumors, and the 

situation of the physician during the process of diagnosing, i.e. the accuracy is 

another important factor as otherwise the wrong identification of disease can lead to 

severe consequences.  For this reason, an accurate, rapid, and sophisticated solution 

should be available to assist as second opinion for doctors and physicians. Artificial 

Intelligence (AI) technology helped researchers identify many ways of classifying 
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tumors throughout the years via machine learning and neural networks algorithms, 

however, classifying the images of brain tumor was challenging due to the need of 

long string of pre-processing labour to be done as mentioned in the literature review. 

After the emerging of deep learning and Convolutional Neural Networks (CNNs), 

the pre-processing became very minimal and simple task to do, and the job of 

features extraction of the tumor is done by the algorithm itself. The matureness of the 

research in this field is coming to a decent level and results, and yet, there is no 

serious step in the way of using these knowledge in the medical field yet, that’s why 

this project has a practical side to it, to get closer to have a strong link between 

engineers and doctors. 

The aim of this project is to develop a multi-second opinion application that run an 

algorithm using deep learning techniques and transfer learning to classify brain 

tumor through MR Images. The networks used in the project are GoogleNet, 

AlexNet, MobileNetV2, ResNet101.  

 

1.3 Scope of the Project 

1) The algorithm is data based, so the accuracy will be limited to the number of data 

samples and the quality of them, meaning that the quality of classification will be 

depending on the data mostly, so the knowledge created will be limited to the 

knowledge that can be extracted from these samples and not all the types or shapes of 

tumors. 

 

2) Computer used is personal computer with Graphic Card: NVIDIA GTX1060 and 

CPU: i7-9750H @2.3GHz, so data processed is limited by computing power, leading 

to time limitation in order to process the data samples and train the algorithm. 

 

3) The dataset used is Figshare dataset, which is free on the web, no purchased data 

used in this research. 

 

4) The pre-trained networks are open source and used in the project as base of the 

work, so no network building from scratch is needed. 
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1.3.1 Objectives 

1. Reaching to accuracy above 90% in validation accuracy in all networks.  

2. Design a 5th opinion application for classification of brain tumor using 4 

different Deep Neural Network using Transfer Learning 
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4.7 Future Works 

While I have developed some aspects of my last semester project future works, I still 

have some future work to be done. First, the dataset used is not sufficient to move the 

application to real medical application because the dataset is not capable enough to 

make the networks real expert in the field due to low number of samples and biased 

nature of this dataset (Figshare); therefore a training on different and much more 

samples is required to achieve the required accuracy that can be trusted. 

Second, the application can be made stand alone, or web application so it can be 

commercialized, while it is a MATLAB based app, it is difficult for medical staff to 

deal with it, so it could be a door of improvement. 

Third, the number of networks can be increased as much as possible so it provides 

the maximum number of predictions possible, increasing the collective second 

opinion percentage by high percentage. 
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