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ABSTRACT 

 

A quadrotor is a highly nonlinear system due to the presence of aerodynamic factors 

such as Coriolis and gyroscopic effects when in flight. In meeting todays’ demands, 

the applications of quadrotors have been extended to include transportation and 

therefore, the study of Quadrotor Suspended Load (QSL) systems has become equally 

as important. However, the presence of the suspended load further complicates the 

quadrotor system as there is strong coupling with the load and excessive load swinging. 

This is a problem which forms the basis for this work. This project begins by providing 

a mathematical description of the QSL system using Euler-Lagrange equations as they 

are much simplified, yet encompass the many factors present during quadrotor 

operation and subsequently control excessive payload swinging. The main strength of 

this work is that unlike other previous work, it covers 8 degrees of freedom (8 DOF) 

in representing the system dynamics. This presents a much more comprehensive and 

definitive way of describing the quadrotor and payload positions. Input shaping is used 

as the swing controller as it is more practical and has been used for swing control of 

other systems. Validation of the swing controller performance is done using MATLAB 

SIMULINK. Unlike other controllers that require sophisticated algorithms for their 

implementation, input shaping will be used as a swing controller as it is much 

simplified in handling excessive load swinging.   
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ABSTRAK 

Quadrotor adalah sistem yang sangat nonlinier kerana adanya faktor aerodinamik 

seperti Coriolis dan kesan giroskopik ketika dalam penerbangan. Dalam memenuhi 

tuntutan hari ini, aplikasi quadrotor telah diperluas untuk mencakup pengangkutan dan 

oleh itu, kajian sistem Quadrotor Suspended Load (QSL) telah menjadi sama 

pentingnya. Walau bagaimanapun, kehadiran beban yang digantung lebih merumitkan 

sistem quadrotor kerana terdapat gandingan yang kuat dengan beban dan beban 

berayun yang berlebihan - masalah yang menjadi asas bagi kerja ini. Projek ini 

dimulakan dengan memberikan penerangan matematik sistem QSL menggunakan 

persamaan Euler-Lagrange kerana banyak disederhanakan, tetapi merangkumi banyak 

faktor yang terdapat semasa operasi quadrotor, setelah itu pengawal dirancang untuk 

mengawal ayunan muatan. Kekuatan utama karya ini adalah tidak seperti karya 

sebelumnya yang lain, ia merangkumi 8 darjah kebebasan (8 DOF) dalam mewakili 

dinamika sistem. Ini menunjukkan cara yang lebih komprehensif dan pasti untuk 

menerangkan kedudukan quadrotor dan muatan. Pembentukan input digunakan 

sebagai swing controller kerana lebih praktikal dan telah digunakan untuk swing swing 

sistem lain. Pengesahan prestasi swing swing dilakukan dengan menggunakan 

MATLAB SIMULINK. Tidak seperti pengawal lain yang memerlukan algoritma yang 

canggih untuk pelaksanaannya, diharapkan pembentuk input akan menjadi pengawal 

yang jauh lebih mudah dalam menangani ayunan beban yang berlebihan. 

  



viii 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xi 

LIST OF FIGURES xii 

 INTRODUCTION 1 

1.1 Background 1 

1.2 Problem Statement 2 

1.3 Research Objectives 2 

1.4 Scope of the Work 2 

1.5 Organization of this Report 3 

 LITERATURE REVIEW 5 

2.1 Introduction 5 

2.2 Unmanned Aerial Vehicle 5 

2.3 Quadrotor vs Drone 5 

2.4 Quadrotor 7 

2.4.1 Quadrotor Configurations 7 

2.4.2 Quadrotor Maneuverability 8 

2.5 Brief Quadrotor History 10 

2.6 Recent advances in the Field of Quadrotors 13 

2.7 Modelling Techniques 14 

2.8 Controllers 15 

2.8.1 Linear controllers 16 



ix 

2.8.2 Nonlinear controllers 17 

2.8.3 Intelligent controllers 19 

2.9 Conclusion 20 

 METHODOLOGY 23 

3.1 Introduction 23 

3.2 Flow chart 23 

3.3 Controller implementation 24 

3.3.1 PID controllers for roll and pitch control 24 

3.3.2 Input shaping control for alpha and beta 24 

3.3.2.1 ZV shaper 25 

3.4 Tools needed 26 

3.5 Summary 26 

 MODELLING 27 

4.1 Modelling (8 DOF) 27 

4.2 Kinematic model 27 

4.2.1 Reference frames 27 

4.2.2 Rotation Matrix 28 

4.3 Summary 33 

 SIMULATION AND RESULTS 35 

5.1 Introduction 35 

5.2 Nonlinear functions 35 

5.2.1 Quadrotor parameters 35 

5.3 Open loop testing 42 

5.3.1 Thrust Only 43 

5.3.2 Thrust and yaw 45 

5.3.3 Thrust and pitch 47 

5.3.4 Thrust and roll 49 

5.3.5 Thrust, yaw, pitch roll 51 

5.3.6 Thrust, yaw and pitch 52 

5.3.7 Thrust, yaw and roll 53 



x 

5.3.8 Thrust, pitch and roll 54 

5.4 Controller Design 55 

5.4.1 Roll and Pitch control 56 

5.4.1.1 PID tuning for Pitch control 57 

5.4.2 Input shaping control implementation 57 

5.5 Discussion 59 

5.5.1 PID control 59 

5.5.2 Payload angle control 60 

5.6 Summary 62 

 CONCLUSION 63 

6.1 Conclusion 63 

6.2 Future Work 64 

REFERENCES  65 

 

  



xi 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1. Rotor combinations for quadrotor manoeuvrability 9 

 

Table 3. 1. Ziegler Nichols tuning rules 24 

 

Table 5. 1. Quadrotor parameters used for simulation 35 

Table 5. 2. PID parameters for roll and pitch 57 

Table 5. 3. Input shaper parameters 58 

Table 5. 4. Roll/pitch maximum peak and settling time 60 

Table 5. 5. Alpha/beta settling time 62 

 

  



xii 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 2.1  Quadrotor vs drone 6 

Figure 2.2  UAV applications 6 

Figure 2.3  Quadrotor 7 

Figure 2.4  a)  ‘+’ configuration  b. cross configuration 8 

Figure 2.5  Gyroplane No1 10 

Figure 2.6  Flying octopus 11 

Figure 2.7  Oehmichen No.2 12 

Figure 2.8 Convertawings Model A 12 

Figure 2.9  Flyer Mark II [10] 13 

Figure 2.10  STARMAC [11] 14 

Figure 2.11 QS4 [12] 14 

Figure 2. 12  Existing controllers for quadrotors [20] 16 

 

Figure 3.1. Flow chart 23 

 

Figure 4.1  Coordinate frames 28 

Figure 4.2  Dynamic model 30 

 

Figure 5. 1 Quadrotor block diagram used for simulation 39 

Figure 5. 2 Quadrotor subsystem 40 

Figure 5. 3 Internal structure of QSL 41 

Figure 5. 4 z integrator block specifications 41 

Figure 5. 5 Internal structure of QSL 42 

Figure 5. 6  Open loop testing 43 

Figure 5. 7  Displacement scope 44 



xiii 

Figure 5. 8  Payload angles 44 

Figure 5. 9  Quadrotor yaw, pitch, roll 45 

Figure 5. 10  Quadrotor displacement when subject to thrust and yaw 46 

Figure 5. 11  Payload angles 46 

Figure 5. 12  Yaw, pitch, roll 47 

Figure 5. 13 Displacement 47 

Figure 5. 14 Quadrotor yaw, pitch, roll 48 

Figure 5. 15  Yaw, pitch, roll 49 

Figure 5. 16  Displacement 49 

Figure 5. 17  Yaw, pitch, roll 50 

Figure 5. 18  Payload swing 50 

Figure 5. 19  Displacement 51 

Figure 5. 20  Yaw, pitch, roll 52 

Figure 5. 21  Displacement 52 

Figure 5. 22 Yaw, pitch, roll 53 

Figure 5. 23  Yaw, pitch, roll 53 

Figure 5. 24 Yaw, pitch, roll 54 

Figure 5. 25  Displacement 54 

Figure 5. 26  Euler angles 55 

Figure 5. 27  Controller implementation 56 

Figure 5. 28  Roll PID controller 56 

Figure 5. 29  Pitch PID controller 57 

Figure 5. 30 Alpha shaper 58 

Figure 5. 31 Beta shaper 58 

Figure 5. 32 Roll control 59 

Figure 5. 33  Pitch control 59 

Figure 5. 34 Alpha, beta after roll/pitch control 60 

Figure 5. 35  Alpha shaped vs unshaped 61 

Figure 5. 36  Beta shaped vs unshaped 61 



xiv 

LIST OF ABBREVIATIONS 

 

AIAA  - American Institute of Aeronautics and Astronautics 

DOF  - Degrees of Freedom 

FL  - Fuzzy Logic 

iLQR  - iterative Linear Quadratic Regulator 

IDA-PBC - Interconnection and Damping Assignment Passivity Based 

                                    Control 

LQR  - Linear Quadratic Regulator 

MBPC  - Model Based Predictive Control 

MEMS  - Micro Electromechanical Systems 

NN  - Neural Network 

PID  - Proportional-Integral-Derivative 

QSL  - Quadrotor Suspended Load 

RL  - Reinforcement Learning 

STARMAC - Stanford Testbed for Autonomous Rotorcraft for Multi-Agent 

                                    Control 

SMC  - Sliding Mode Control 

T-S  - Takagi-Sugeno 

UAV  - Unmanned Aerial Vehicle 

ZV  - Zero Vibration 

ZVD  - Zero Vibration and Derivative 

ZVDD  - Zero Vibration and double Derivative 

 

 

  



 

1 

  

 

 

INTRODUCTION 

1.1 Background 

Over the past few years, Unmanned Aerial Vehicles (UAVs) have gained so 

much popularity mainly due to the nature of their simplicity and ease of 

manoeuvrability. UAVs have found several applications in rescue operations, 

surveillance, robotics, image and data acquisition, etc. [1]. Due to these wide range of 

applications, UAVs have drawn so much attention from several scholars around the 

globe as they are all trying to find better and innovative ways of being able to control, 

analyse and understand these UAVs in the best possible way [2]. Quadrotors are one 

such example and have enabled previously impossible tasks to now become a reality 

[3] as they are now able to perform tasks that would otherwise be too risky for human 

beings or impossible for human beings to perform due to remoteness of the area, risk 

factors,  just to name a few.  

 

A quadrotor consists of four rotors propelled by motors, control board and 

power source. By rotating, the four rotors generate a downwards thrust that in turn 

causes the UAV to be lifted upwards [4]. Manoeuvrability of the quadrotor is achieved 

by varying the motor speeds to each of the four rotors while the control board is 

responsible for all control actions and synchronisation of all components. Quadrotors 

are now being commonly used for rescue transportation and by extension, the study of 

Quadrotor Suspended Load (QSL) systems is just as important. However, the main 

challenge posed by QSL systems is excessive load swinging as it is undesirable.  

In an effort to reduce this undesirable load swinging, several control methods 

such as Linear Quadratic Regulation (LQR), iterative LQR (iLQR), Interconnection 

and Damping Assignment Passivity-Based Control (IDA-PBC), have been proposed. 
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1.2 Problem Statement 

Control and dynamic modelling of higher order and nonlinear systems 

continues to be a huge engineering challenge. A quadrotor is one such system as there 

are several aerodynamic properties at play during its operation.  

When coupled with a suspended load, it becomes even much more complicated 

because it has higher degrees of freedom. Additionally, it has strong coupling with the 

payload and has significant payload oscillation. 

1.3 Research Objectives 

The objectives of the research are: 

(a) To obtain an accurate non-linear mathematical description of the quadrotor 

with a cable suspended payload. 

(b) To simulate the obtained mathematical model and to analyse their dynamic 

characteristics. 

(c) To control the payload swing angle using input shaping control as a swing 

controller 

 

1.4 Scope of the Work 

This work is limited to the following factors: 

 

(a) To obtain an accurate non-linear mathematical description of the quadrotor 

with a cable suspended payload 

(b) To simulate the obtained mathematical model and to analyse their dynamic 

characteristics by using MATLAB/Simulink 
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(c) To control the payload swing angle using input shaping control as a swing 

controller. 

(d) A QSL system with 8 DOF is considered.  

1.5 Organization of this Report 

The subsequent chapters are organized as follows; Chapter 2 reviews relevant 

literature in the field of QSL systems as well as some controllers that have been used. 

Chapter 3 then discusses the methodology used in achieving the project objectives and 

is followed by chapter 4 which discusses the mathematical modelling and simulation 

setup. Chapter 5 presents the results and lastly chapter 6 concludes the project and 

outlines the recommendations for future work.  
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