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Abstract. This research aims to analyze the contact pressure on acetabular cup surface with dimple 
addition and without  dimple addition. The main contribution in this research is to explore the 
influence of dimple addition to contact pressure that affects implant lifetime. The simulation is 
carried out by giving fully 3D physiological loading of the hip joint under normal walking conditions. 
Contact pressure analysis conducted on dry contact condition and meshing with the two-pole 
method performed to provide a comprehensive contact pressure result. The results show that the 
total hip arthroplasty model with dimple addition can reduce contact pressure for all phases in one 
full cycle with average decreased by 15.53% which indicates that adding dimple to the contact 
surface in the total hip arthroplasty bearing can extend the life of implant use. 

Keywords: total hip arthroplasty, contact pressure, surface, dimple, finite element method 

1. Introduction 
Widely known diseases of the human hip joint such as osteoarthritis and avascular necrosis which 
cause cartilage degradation [1] and femoral neck fracture due to a specific event [2]. This requires 
recovery surgery by performing hip joint replacement surgery using an artificial hip joint with hip 
resurfacing or total hip arthroplasty [3]. It is known that total hip replacement surgery is one of the 
most operation successfully and cost effectively methods for replace hip joints to relieve pain and 
stabilize mobility. Hip joint replacement surgery registers approximately one million operation of 
hip joint replacements performed every year around the world [4] and more than 5 million 
artificial hip joint components are installed worldwide [5]. 
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Contact mechanics is a branch of science from Tribology that is used to analyze contacts that 
occur on two surfaces that move relative to other surfaces [6], where one of the parameters is 
used into account in contact mechanics is contact pressure that occurs on the contact surface [7]. 
Components of total hip arthroplasty, which are acetabular cup and femoral head come into 
contact with each other in carrying out various activities done by humans [8]. Contact pressure 
analysis is important to do with total hip arthroplasty especially on the acetabular cup and femoral 
head to known the contact pressure that occurs and can be a reference to optimize the design of 
implants, material, parameters of surgery, and provide a preferable understanding of the long 
period of time performance and success of implant [9–11]. By reducing the contact pressure, we 
can minimize the wear on total hip arthroplasty and this has a significant effect on survival period 
of implant [11]. 

The use of textured surfaces has received special attention in application to mechanical 
components [12] such as trust bearings [13], roller bearings [14], journal bearings [15], piston rings 
[16], mechanical seals [17], cutting tools [18] also various other uses. In the field of Biomedical 
Engineering, particularly orthopedic implant, application of surface texturing in total hip implant 
has begun to carried out on the direct surface contact with the addition of dimple [19]. Based on 
the available literature, dimple reduces the surface contact area which decreases adhesion wear 

[20] and friction coefficient [21]. The addition of dimple also serves to trap worn particles, thus 
preventing abrasive wear from contact surfaces by third-party hard particles [22] as well as 
producing hydrodynamic pressure to serve additional lift [23]. Various studies have also shown the 
positive effect of adding dimple to bearing which can improve tribological performance proven 
theoretical and experimental [24]. But until now, the effect of adding dimple to contact pressure 
on total hip arthroplasty has not provided a more detailed description in the explanation from 
previous researchers. 

Finite element method as an accurate computational tool for contact pressure analysis is 
reported to have extensively used by previous researchers to cut high costs and minimize long 
periods of time for trials and laboratory studies. But with the advantages offered, there are still 
many researchers who use finite element method with simplified models and loading. Looking at 
previous studies on total hip arthroplasty, Basri et al. [19,25] analyzed the influence of geometry 
and arrangement variations on dimple addition to lubrication performance using the finite 
element method, but the study did not focus on the analysis of contact pressures and the finite 
element model presented was very simplified and the force applied was still using 2D loads that 
did not meet the physiological conditions of the hip joint. Besides that Shankar et al. [26] 
predicting contact pressure and wear by using gait loading is not simplified, but the addition of 
dimple and its effect has not been done and a simple axisymmetric finite element model is used 
which can minimize the accuracy of the results obtained. 

Research in this paper aims to analyze contact pressure on the acetabular cup surface with and 
without the addition of dimple. This is done by 3D dry contact models using un-simplified loading 
for more accurate results. Comparison of contact pressure prediction for total hip implant with 
and without the addition of dimple will give detail description and the development of 3D finite 
element model for total hip implant with the addition of dimple has been done by the authors as a 
novelty in this study, because there are no researchers who have succeeded in making a finite 
element analysis for total hip arthroplasty with the addition of dimple which has several numbers 
of dimple in 3D models. 

 
2.  Materials and method 

2.1 Geometry and material parameter 

In this research, the geometry of total hip implant, for femoral head and acetabular cup 
components, refers to previous studies conducted by Uddin and Zhang [27] and Mak et al. [9] 
which are described in Table 1. Table 2 show the addition of dimple to total hip arthroplasty was 
referred in previous research conducted by Choudhury et al. [28]. The combination of materials 
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used for femoral heads and acetabular cups is metal on metal (MoM) using Cobalt-Chromium-
Molybdenum (CoCrMo) which is assumed to be homogeneous based on Ammarullah, 2019 [29]. 
The material properties of CoCrMo are described in Table 3. Friction coefficient in this study uses a 
value of 0.15. This is based on the research explanation by Bergmann et al. [30] which explains the 
friction coefficient for MoM bearings is in the range of 0.1 - 0.2. 

Table 1. THA geometry parameter 

Parameter Size 

Diameter of femoral head (Rhead) 28 mm 

Clearance (c) 5 μm 

Thickness of acetabular cup (tcup) 5 mm 

Table 2. THA addition dimple parameter 

Parameter Size 

Diameter 0.26 mm 

Deep 0,03 mm 

Shape Circle 

Pattern Circular 

Number of patterns 6 

Number of dimples 91 

Pitch 0,48857348 mm 

Addition area femoral head contact surface 

Table 3. Material property of CoCrMo 

Parameter Size 

Poisson ratio (υ) 0.3 

Density (ρ) 8300 kg/m3 

Young modulus (E) 210 GPA 

2.2 Geometry modelling 

 
Figure 1. Geometry models without and with the dimple addition 

 
Based on data on the geometry parameters of total hip arthroplasty in Table 1 and the dimple 
addition parameter of Table 2, the model of total hip arthroplasty with and without addition of 
dimple was made which is described in Figure 1. 
 
 



iCOMERA 2020
IOP Conf. Series: Materials Science and Engineering 1034  (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1034/1/012001

4

 
 
 
 
 
 

2.3 Finite element modelling 
The simulation is represented by acetabular cup and femoral head as main components in the 
research to reducing the simulation time and using less storage space. Finite element model of 
total hip implant is using a 3D model of ball-in-socket with femoral head asymmetries from 
previous study [27,31,32] for geometric efficiency that is not needed but still gives promising 
results. 

Meshing in this study was carried out by forming dual-poled as carried out by Pedersen et al. 
[33]. Micro finite element development carried out with finite element model in this study 
because the addition of dimple area with micro-size and large amounts on the contact surface of 
the femoral head is presented. This is imperative to considering the automatic meshing in cases 
like this is difficult to do, and no researchers have presented their finite element analysis for total 
hip implant cases with the addition of micro-sized dimple and large amounts and can make contact 
nodes that meet each other between two surfaces. The application of element boundary area in 
dimple addition area has further improved so that it can mesh the dimple addition area, but does 
not change other contact nodes. Meshing in areas with the addition of dimple The finite element 
model with and without the dimple addition is described in Figure 2. 

 

 

Figure 2. Finite element model without and with the dimple addition 

2.4 Boundary conditions 
Boundary conditions in the simulation of total hip arthroplasty are important to determine in 
order to simulate the object in accordance with real conditions. Boundary conditions are given to 
the femoral head and acetabular cup components. In acetabular cup, boundary conditions are 
given by making the object immovable by making fully constrained entire surface of acetabular 
cup based on actual conditions where acetabular cup attaches to the acetabulum and makes it 
immobile. The influence of the third object during the simulation is ignored. Furthermore, for 
determining the boundary conditions on the femoral head, range of motion is given based on the 
real conditions, femoral head articulating on acetabular cup surface has a range of motion that 
occurs in accordance with the activities carried out. Determination of boundary conditions is 
explained in Figure 3. 
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Figure 3. Determination of boundary conditions 

2.5 Gait cycle 

 
Figure 4. Gait loading and range of motion under normal walking conditions 
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Various studies have reported that the gait loading given in the prediction of contact pressure in 
total hip arthroplasty is under normal walking conditions [34]. That is because the dominant daily 
activities carried out by the human hip joint are in normal walking conditions. The approach taken 
for gait cycle under normal walking conditions with 3D loading that represents wholly physiological 
condition of the hip joint referring to previous studies conducted by Bergman et al. [30], where the 
data comes from experimental research that measures range of motion and gait loading in the 
left-sided hip joint using total hip implants based on a median of four different patients. Gait 
loading and range of motion under normal walking conditions are described in Figure 4. 

For calculation simplified, we refined this cycle to 32 phases [26,27,31,32]. The 1-19 Phase is 
called the standing phase (the first 60% of the gait cycle), and the 20-32 phase is called the swing 
phase (the last 40% of the gait cycle). The magnitude and direction of the load acting on the hip 
joint vary according to the phase change of the normal walking cycle, and the maximum load on 
the hip joint is measured at 2326 N, which occurs at the 7th phase of motion at the peak of the 
standing leg phase. 

2.6 Contact mechanics 
The main parameters of the contact mechanism that need to be determined are the contact 
pressure and contact area, which is indicated that the contact voltage is directly related to the 
wear and damage of the contact surface. [35]. In contact mechanics, the relationship between the 
two can be formulated, where the contact pressure (P) is the applied load (Fn) divided by the 
contact plane (A) in Equation (1) [36]. 

  
  
 

 (1) 

The greater contact area generally leads to a decrease in contact pressure. The study of contact 
mechanics in total hip arthroplasty is related to Biotribology where the pressure on the bearing 
surface is a parameter for studying overall Biotribology. Contact mechanics are important things to 
consider when designing total hip arthroplasty [37]. Contact pressure values in this study will be 
obtained through numerical analysis using the finite element method. 
 
3. Results and discussion 
 
3.1 Convergence study 
This study was conducted to select the representative number of elements for the total finite 
element analysis of total hip implant in this research, namely the total hip arthroplasty model 
without and with the addition of dimple. The results of the convergence study without and with 
the addition of dimple are respectively explained in Figure 5 and Figure . 

Total hip implant model with and without the addition of dimple, eight simulations were 
performed with a number of different elements, then one of them was chosen as a representation 
of the model with the optimal number of elements. For models without the addition of dimple, 
the results of the 4th simulation with the number of elements 23,484 were chosen as a 
representation of the model with the optimal number of elements because the results of the 4th to 
8th simulation of this model have good linearity with maximum contact pressure values ranging 
from 80- 81 MPa, but the smallest number of elements is owned by the results of the 4th 
simulation. With good linearity in mind and the use of fewer elements, we chose the results of the 
4th simulation. As for models with the addition of dimple, the highest number of elements was 
chosen as the representation of the model with the optimum number of elements because the 
addition of micro-sized dimple with a large number requires finer elements to provide accurate 
contact analysis simulation results. With this in mind, the results of the 8th simulation with a total 
of 195,251 elements for the total hip arthroplasty model with the addition of dimple were chosen 
as representative models. 
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Figure 5. Convergence study of model elements without the addition of dimple 

 
Figure 6. Convergence study of model elements with the addition of dimple 

 
Comparison of the number of elements used in this study was carried out with previous 

research conducted by Uddin and Zhang [27] for the total hip implant model without the addition 
of dimple, while for the total hip implant model with the addition of dimple not done because it 
does not have research that can be used as a comparison of the number of elements. The total 
number of hip arthroplasty model elements without the addition of dimple used in this study was 
23,494 elements, whereas in previous studies conducted by Uddin and Zhang there were 67,696 
elements. The difference in the number of elements used between this study and those conducted 
by Uddin and Zhang is so significant, where the number of elements used by Uddin and Zhang is 
almost three times more than those used by the authors in this study. However, if we look at the 
way of meshing between this research and those conducted by Uddin and Zhang differently. The 
author conducts meshing by forming two axes so as to make the hexahedral element so dominant 
and make the contact pressure contour look so clear, whereas in research conducted by Uddin and 
Zhang the meshing method they use is automatic meshing so that it does not have a structured 
pattern and many tetrahedral elements are used. 

3.2 Contact pressure validation 
Contact pressure validation was carried out with research conducted by Uddin and Zhang [27] for 
the total hip arthroplasty model without the addition of dimple, while for the model with the 
addition of dimple not done because it does not have research that can be used as a validation of 
contact pressure. In previous studies as a contact pressure validation, the highest contact pressure 
value was in the 7th phase with a value of 78.57 MPa, while for the highest contact pressure value 
obtained by the author was in the 7th phase with a value of 80.75 MPa. The percentage of error is 
sought to see the suitability of the results between the two and the percentage of errors obtained 
is 2.7% which meets the contact pressure validation criteria with a percentage error <5% so that it 
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is deemed appropriate and can proceed to the contact pressure analysis stage. Contact pressure 
validation is explained in Figure 7. 
 

 
Figure 7. Contact pressure validation 

 
The results obtained provide a rational translation because in the division of phases as much as 

32 for one normal loading cycle [26,27,31,32], the biggest load is in the 7th phase which is one of 
the phases of the standing phase (60% cycle, phase 1-19) and if we look at the physiological 
condition of the hip bone connection, the 7th phase is a condition when the hip bone connection 
holds the body's burden completely to step the other foot, where the other foot is undergoing a 
phase of swing [30,38]. 

3.3 Contact pressure analysis 
After passing through a normal loading cycle with a total of 32 phases, a contact pressure value on 
the acetabular cup surface is obtained in total hip implant with and without the addition of 
dimple. Contact pressure analysis of the two models is explained in Figure . 
 

 
Figure 8. Contact pressure analysis 

 
Based on Figure 8, it can be seen that the total hip arthroplasty model without the addition of 

dimple in one full cycle has a higher contact pressure value for all phases when compared to the 
total hip arthroplasty model with the addition of dimple. This illustrates that the impact of dimples 
on the reduction in contact pressure with the middle was reduced by 15.53%. This is because the 
addition of dimples to the surface of the femoral head makes the area that comes in direct contact 
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with the acetabular cup diminishes and expands the real surface of the femoral head to minimize 
the contact pressure that occurs on the acetabular cup [36]. 

The maximum contact pressure for the total hip implant model without and with the addition 
of dimple are both in the 7th phase with values of 80.75 MPa and 76.5 MPa respectively. This 
shows that the addition of dimple to total hip arthroplasty in this study can reduce the maximum 
contact pressure by 5.26 %. As for the minimum contact pressure for the total hip arthroplasty 
model without and with the addition of dimple both are in the 30th phase with values of 39.28 
MPa and 17.3 MPa respectively. This shows that the addition of dimple to total hip arthroplasty in 
this study can reduce the minimum contact pressure by 55.96 %. Significant reduction with the 
addition of dimple can be seen in phases 1-2 and 23-32 which can reduce contact pressure more 
than 10 MPa in each phase. It can be concluded that the effect of dimple addition on total hip 
arthroplasty is very significant in swing phase and contrary in stance phase. 

Contact pressure analysis in this study successfully demonstrated a reduction in contact 
pressure by adding dimple to the contact area. Looking at Archard's wear equation [39] where one 
of the factors that influence wear is contact pressure. Moreover, reducing contact pressure the 
wear will be reduced so that it can prolong the use of implant devices. 

 
4. Conclusions 
Research in this paper successfully carried out a finite element study for total contact pressure of 
hip arthroplasty without and with the addition of dimples in dry contact under 3D physiological 
loading conditions in a normal walking cycle. The results of this study can be concluded as follows: 

 The gait cycle, intensity and location of the maximum contact pressure in the bearing 
component changes according to the loading phase, with the highest contact pressure value in 
the 7th phase in the standing phase and the lowest in the 30th phase in the swing phase. 

 Adding dimple to total hip arthroplasty can reduce contact pressure in all phases in one cycle 
with median lower by 15.53 %. 

 Through validation with previous research, it can be found that the contact pressure analysis 
model in this study can provide rational predictions. 
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