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ABSTRACT 

 

 

 

The conventional way of modeling extinction ratio’s (ER) temperature 

compensation table of a transceiver module results to high manufacturing testing time, 

thus gives an issue in manufacturing line which is low UPH (Units per hour). The 

conventional way is through manual temperature cycling and through an algorithm 

which is step search. This uses an expensive time with low UPH. In an ER temperature 

compensation table, several TOSA and module parametric values affect it. Each of 

these parameters were studied and used to feed the network. This work aims on 

determining the best parameters that will produce AC bias based on relevant AC 

properties, developing an MLP ANN model that utilizes and identifies parameters in 

order to predict AC bias value which will be used in generating ER temperature 

compensation table, and lastly, modeling an artificial neural network that predicts ER 

temperature compensation table to boost up UPH. Several experiments were 

performed to select the best parameters to produce AC bias based on relevant AC 

properties and these are all TOSA data and Module_ER_at_80, which includes a total 

of 26 parameters. In addition to this, optimum UPH is obtained using these parameters 

at 2.44. And the MLP ANN model with 23 number of neurons in hidden layer was 

developed to obtain the highest possible neural network performance which is having 

2.44UPH, +/-3 DAC counts distribution, ῀8.7 MSE, and ῀0.93 r-square. 
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ABSTRAK 

 

 

 

Cara konvensional untuk mengira nisbah (ER) suhu adalah dengan 

membahagikan nisbah (ER) dengan jumlah pengurangan hasil modul transiver kepada 

masa ujian perkilangan yang tinggi. Situasi ini akan memberi  masalah terhadap 

jumlah pengeluaran yang rendah UPH (Unit per jam). Cara konvensional terbaik 

adalah dengan melalui kaedah putaran suhu manual dan melalui pengiraan algoritma . 

Cara ini menggunakan masa yang lama dengan UPH yang rendah. Setiap jadual 

pengurangan suhu ER, ia melibatkan nilai TOSA dan parameter tertentu. Setiap 

parameter ini dikaji dan digunakan untuk memberi hasil kepada talian rangkaian. 

Langkah ini bertujuan untuk menentukan parameter yang terbaik untuk menghasilkan 

“ACBias” berdasarkan ciri- ciri AC yang relevan, pembangunan model MLP ANN 

yang menggunakan dan mengenal pasti parameter untuk meramalkan nilai “ACBias” 

yang akan digunakan dalam menjana suhu nisbah ER dan akhir sekali, model 

rangkaian neural buatan yang meramalkan Rajah pampasan suhu ER untuk 

merangsang UPH. Beberapa eksperimen dilakukan untuk memilih parameter terbaik 

untuk menghasilkan kecenderungan AC berdasarkan ciri-ciri AC yang relevan dan ini 

adalah semua data TOSA dan Module_ER_at_80, yang merangkumi sejumlah 26 

parameter. Sebagai tambahan kepada ini, UPH optimum diperoleh menggunakan 

parameter ini pada 2.44. Dan model MLP ANN dengan 23 bilangan neuron dalam 

lapisan tersembunyi telah dibangunkan untuk memperoleh prestasi rangkaian neural 

tertinggi yang mempunyai 2.44UPH, +/- 3 DAC pengagihan, ῀8.7 MSE, dan ῀0.93 r-

square. 
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CHAPTER 1 

 

 

  

INTRODUCTION 

 

 

 

1.1 Introduction 

 

A transceiver module consists of two Optical Sub Assembly (OSA), one for 

Transmitter Optical Sub Assembly (TOSA) and another for Receiver Optical Sub 

Assembly (ROSA). Test data for these two OSAs should be passing data sheet 

specifications before assembled into a transceiver module. Once assembled, the whole 

transceiver module is subjected into parametric testing and should also be meeting data 

sheet and its Multi-Source Agreement (MSA) specification before shipping the parts 

to customer. 

 

 

 

Figure 1.1: Optical Transceiver Manufacturing Process 

Programming 
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In an optical transceiver module testing, there are several processes as shown 

in figure 1.1, such as programming, parametric tuning and verification, labeling, 

packaging, and then shipped to customer. 

 

During programming, the transceiver module is programmed with its firmware, 

its name which is what we call serial number, its family which is what we call part 

number and several identities as well like manufacturing date and Finisar’s company 

name. Then, the transceiver module is tuned to target several parameters based on its 

datasheet, these parameters are verified on the next process. Once it passed these tests, 

the unit is labeled with a printed barcode sticker that will contain its identity, then the 

unit is packaged together with the other units and shipped to customer. Let’s 

concentrate more on parametric tuning and verification which is discussed on the next 

paragraphs. 

 

In parametric tuning, an optical transceiver module is tuned to generate two 

temperature compensation tables. These are laser current and Extinction Ratio (ER) 

temperature compensation tables.  In generating a table for extinction ratio, module is 

subjected to three temperatures. At each temperature a Direct Current (DC) bias value 

is determined for a targeted laser current value and Alternating Current (AC) bias value 

is determined for a targeted extinction ratio. For some optical transceiver modules, 

there is also a different table for different voltage levels.  

 

The next test process after parametric tuning is verification of tuning 

parameters where the tuned parameters and temperature compensation table is verified 

and tested on different temperature settings and voltage settings for its correctness. 

The accuracy in determining the AC bias value for extinction ratio should be high in 

order to have lesser failures during verification test process. 

 

 

 

 

 

 



3 
 

1.2 Background of the Problem 

 

To generate an extinction ratio temperature compensation table, the module 

will be subjected to three temperatures, one is room temperature and the other two are 

extreme temperatures such as cold and hot temperature. One issue here is it takes a 

long time to ramp a temperature from cold to hot temperature. Another issue is the 

generation of extinction ratio temperature compensation table which also takes time 

which will be discussed in the next paragraphs. 

 

To target a certain ER per temperature, the current algorithm is through step 

search. In step search, a default AC bias value is firstly pumped into the module, then 

the ER is read out, if the ER is higher than the targeted value, then the AC bias value 

is lowered down through a certain value of step, if ER is lower than the targeted value, 

then ER is increased through a certain value of steps, until the ER is targeted. 

 

By doing step search, it takes an average of 126 seconds to target an ER value. 

If there are three temperatures where we need to target ER plus two voltage settings, 

then that will take 630 seconds per module. If Finisar produces 100 optical transceiver 

module per week per test station, then it takes 63,000 seconds of step searching per 

week.  

 

In a manufacturing company, units per hour (UPH) is very important as it 

defines the manufacturing company’s efficiency. UPH is calculated by dividing the 

number of units produced in a day by the hours in the workday (Parrie, 2005). If we 

have 10 test stations, for a 100 unit output per week per test station, then UPH is 5.96. 

The struggle in a manufacturing company is to get the UPH increased as much as 

possible to boost up the company’s efficiency, and the best way to do this is to reduce 

manufacturing testing time which will be one of the major aim of this research. 
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1.3 Problem Statement 

 

The conventional way of modeling extinction ratio’s temperature 

compensation table of a transceiver module results to high manufacturing testing time, 

which results to a low UPH (Units per hour). To generate a table is through manual 

temperature cycling and through an algorithm which is step search. This uses an 

expensive time with low UPH. 

  

 There are several AC and DC for both TOSA and module parameters that 

affects the ER and the proposed alternative solution is an ANN that predicts each AC 

bias in an ER temperature compensation table with based on these identified AC and 

DC for both TOSA and module parameters that influence its behavior. This solution 

will give a reasonable accuracy and will help reduce testing time, thus increasing 

manufacturing UPH. 

 

 

 

1.4 Aim 

 

The aim of this paper is to propose an ANN model to predict ER temperature 

compensation table that will help reduce testing time this increasing UPH with a 

reasonable network performance. 

 

 

 

1.5 Objectives 

 

This paper’s research objectives are: 

 

i. To determine the best parameters to produce ACBias based on relevant 

AC properties 
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ii. To develop and MLP ANN model utilizing the identified parameters in 

order to predict AC bias value which will be used in generating ER 

temperature compensation table. 

 

 

 

1.6 Scope of the Research 

 

The scope of this research are listed as follows: 

 

i. Dataset 

Data will be collected from two database. One is from Finisar’s 100G/40G 

CGR4 QSFP28 optical transceiver module data from Ipoh site. Another data is 

Transceiver Optical Sub-Assembly data from Wuxi site. 

 

ii. ANN model for predicting ER temperature compensation table 

ANN model was designed using MatLab 2011a software. Multi-Layer 

Perceptron (MLP), and a network type which is feed forward model is the focus 

of this ANN. 

 

 

 

1.7 Importance and Significance of the Research 

 

In a manufacturing line, UPH is very important, it defines how well a 

manufacturing line performs. A high UPH shows that a manufacturing line output is 

high in a short period of time which is good. So, Finisar’s manufacturing line tries its 

best to increase and improve its UPH. One way to improve UPH is by reducing 

manufacturing testing time to which this research will focus on. Through predicting 

temperature compensation table for extinction ratio of an optical transceiver module. 

Because whenever a value is predicted, then there will not be a need to test and subject 

the unit to test.
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