

SOFTWARE-IN-THE-LOOP TESTING FOR PRODUCT TESTING SOFWARE IN

LABEL TEST PROCESS

CHESTER LAURENCE BARCELON TAN

A dissertation submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Computer Science

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

 SEPTEMBER 2018

iii

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Assoc. Prof. Dr. Dayang Horhayati

Binti Abang Jawawi, for her endless support, advices, and encouragement to my research

studies. She diligently have been giving direction to me during the course of my research

every time I needed it.

I would also like to express my gratitude to Finisar Company for giving us this

opportunity to further extend our studies and even sponsoring the financial expenses.

Special thanks to my colleagues and friends for the support and ideas they have given

throughout my research studies.

Finally, I must express my very profound gratitude to my parents and family for

providing me with unfailing support and continuous encouragement throught my years

of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

iv

ABSTRACT

Manufacturing software are widely being used in automating production lines as

it makes the process faster, ensure safety of the workers, and costs less in long term. As

technology advances, the software used also updates as its job requirement for these types

of software goes more complex. To ensure that the software does it job, software testing

is performed. However, performing manual software testing consumes a lot of time and

manpower, so it has become costly for business. By looking for solutions, some

manufacturing companies has found ways to overcome this software testing issue by

utilizing virtual testing methods. In this study, it is proposed to use Software in the Loop

(SIL) method on testing ParTest. SIL is increasingly known in testing software embedded

in microchips. This technique is used to allow the development of the software in parallel

with the development of the hardware without waiting for the actual hardware to be ready.

Through a technology survey, the SIL implement ParTest is evaluated according to its

usefulness. By implementing this method, it shows that it can help produce better

software and shorten the turnaround time for projects, which results to a more cost

efficient method.

v

 ABSTRAK

Perisian pembuatan digunakan secara meluas dalam mengautomasikan garisan

produksi kerana ia membuat proses lebih cepat, menjamin keselamatan para pekerja, dan

kos kurang dalam jangka panjang. Sebagai kemajuan teknologi, perisian yang digunakan

juga kemas kini sebagai keperluan pekerjaan untuk jenis perisian ini menjadi lebih

kompleks. Untuk memastikan perisian itu berfungsi, ujian perisian dilakukan. Walau

bagaimanapun, melaksanakan ujian perisian manual menggunakan banyak masa dan

tenaga kerja, jadi ia menjadi mahal untuk perniagaan. Dengan mencari penyelesaian,

sesetengah syarikat pembuatan telah menemui cara untuk mengatasi masalah pengujian

perisian ini dengan menggunakan kaedah ujian maya. Dalam kajian ini, dicadangkan

untuk menggunakan perisian dalam Loop (SIL) pada ujian ParTest. SIL semakin dikenali

dalam perisian ujian yang tertanam dalam mikrocip. Teknik ini digunakan untuk

membolehkan pembangunan perisian selari dengan perkembangan perkakasan tanpa

menunggu perkakasan sebenar siap. Melalui tinjauan teknologi, SIL melaksanakan

ParTest dinilai berdasarkan kegunaannya. Dengan melaksanakan kaedah ini, ia

menunjukkan bahawa ia dapat membantu menghasilkan perisian yang lebih baik dan

memendekkan masa pemulihan untuk projek, yang menghasilkan kaedah yang lebih

efisien.

vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 ACKNOWLEDGEMENT iii

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS vi

 LIST OF TABLES x

 LIST OF FIGURES xiii

 LIST OF ABBREVIATIONS xv

 LIST OF APPENDIXES xvi

1 INTRODUCTION

 1.1 Overview 1

 1.2 Problem Background 2

 1.3 Problem Statement 4

 1.4 Research Aim and Objective 6

 1.5 Scope 7

 1.6 Significance of the Study 7

 1.7 Dissertation Organization 8

2 LITERATURE REVIEW

 2.1 Introduction 9

 2.2 Overview of Software Testing 9

vii

 2.3 In-the-Loop Testing 11

 2.3.1 Hardware-in-the-Loop 12

 2.3.2 Software-in-the-Loop 13

 2.3.3 Model-in-the-Loop 15

 2.3.4 In-the-Loop Discussion 16

 2.4 Optical Transceiver Module 17

 2.5 Discussion 19

 2.6 Summary 20

3 METHODOLOGY

 3.1 Introduction 21

 3.2 Research Process Flowchart 21

 3.3 Research Design 23

 3.4 Technology Acceptance Model 25

 3.5 Summary 27

4

THE PROPOSED FRAMEWORK OF SOFTWARE

TESTING TECHNIQUES FOR MANUFACTURING

SOFTWARE

 4.1 Introduction 28

 4.2 Framework of ParTest 28

 4.2.1 ModTest3 29

 4.2.2 Tests 30

 4.2.3 Drivers 31

 4.2.4 ParTest 32

 4.2.5 Execution Flow of ParTest 32

 4.2.6 Validating a Test Class 34

 4.2.7 ParTest Framework Summary 34

 4.3 The Proposed Framework of Software Testing Tool 35

 4.3.1 Framework Overview 36

 4.3.2 Virtual Module Framework Flow 37

viii

 4.3.3 Virtual Module Component 40

 4.3.4 Characteristics of Proposed Virtual Module 41

 4.4 ParTest and Virtual Module 41

5 APPLICATION OF THE PROPOSED FRAMEWORK

 5.1 Introduction 43

 5.2 The Case Studies 43

 5.3 Test Case File for Virtual Module 45

 5.3.1 Subject Test Class 45

 5.3.2 Environment Settings 46

 5.3.3 Virtual Drivers 47

5.3.4 Expected Result and Evaluation of Test Class

Result
48

 5.4 The Case Study 1 49

 5.4.1 Generation of Test Case for Case Study 1 50

 5.4.2 Execution of Test Case for Case Study 1 53

 5.4.3 Evaluation of Expected Result for Case Study 1 55

 5.5 The Case Study 2 57

 5.6 Discussion 59

 5.7 Summary 60

6
EVALUATION FOR THE VIRTUAL MODULE

FRAMEWORK

 6.1 Introduction 61

 6.2 Survey on Acceptance Model 61

 6.2.1 Technology Acceptance 62

 6.2.2 Proposed VM Framework Usability Validation 64

 6.3 Data Analysis from Survey 67

 6.3.1 Reliability Test 67

 6.3.2 Experience and Demography of the Respondents 69

 6.3.3. Hypotheses Test 70

ix

 6.4 Results and Discussion 72

 6.5 Summary 73

7 CONCLUSION

 7.1 Research Summary 74

 7.2 Research Contributions 75

 7.3 Future Work 75

 REFERENCES 77

 APPENDIX A 80

 APPENDIX B 82

 APPENDIX C 84

 APPENDIX D 85

x

LIST OF TABLES

TABLE

NO.

TITLE
PAGE

2.1 MSA Data Fields for SFP 18

4.1 Variations of Test Classes in ParTest 30

4.2 Three Parts of Virtual Module Flow 39

5.1 Environment Settings of a Test Case File 47

5.2 Test Cases Changes between Case Study 1 and Case Study 2 57

6.1 Questions Employed in TAM Construct 63

6.2 Null Hypothesis for the Experiment 65

6.3 Alternative Hypothesis for the Experiment 65

6.4 Instrumentation Involved in the Experiment 66

6.5 Reliability Levels of Cronbach’s Alpha 68

6.6 Reliability Tests 68

6.7 Demography Data 69

6.8 Correlation Coefficients between PU, PEOU, BIU 71

6.9 p-value between PU, PEOU, BIU 71

6.10 Accepted Hypothesis for the Experiment 71

6.11 Feedback from Respondents 73

xi

LIST OF FIGURES

FIGURE

NO.

TITLE PAGE

1.1 Finisar’s Typical Tester Setup 4

2.1 HIL Diagram 13

2.2 SIL using MATLab Simulink 15

2.3 Differences of MIL, SIL, and HIL 16

3.1 Research Framework Flow Chart 22

3.2 Framework for ParTest Software Testing Tool 24

3.3 TAM 26

4.1 The ParTest Component Diagram 29

4.2 Sequence Diagram of ParTest Executing a Test Class 33

4.3 ParTest Diagram 35

4.4 Virtual Module Component Diagram 37

4.5 Sequence Diagram of Virtual Module Executing a Test Class 38

4.6 ParTest to Virtual Module Diagram 42

5.1 Test_SmartEEPROM_WriteHP2SN Flow Chart 44

5.2 Four Parts of a Test Case File 45

5.3 Subject Test Class of a Test Case File 46

5.4 Environment Settings of Test Case File 47

5.5 Virtual Drivers of Test Case File 48

5.6 Expected Results of Test Case File 48

5.7 Subject Test Class of Case Study 1 50

5.8 Environment Settings of Case Study 1 50

xii

5.9 Virtual Drivers of Case Study 1 52

5.10 Expected Result of Case Study 1 53

5.11 Log File of Case Study 1 54

5.12 Sequence Diagram with Usage of Test Case File 55

5.13 Sample VMOD File 56

5.14 Comparison of Initial VMOD to Final VMOD of Case Study 1 56

5.15 Log File of Case Study 2 58

5.16 Comparison of Initial VMOD to Final VMOD of Case Study 2 59

6.1 TAM Construct 62

xiii

LIST OF ABBREVIATIONS

BIU - Behavioral Intention to Use

DUT - Device under Test

HIL - Hardware-in-the-Loop

JSON - JavaScript Object Notation

MIL - Model-in-the-Loop

PEOU - Perceived Ease of Use

PU - Perceived of Usefulness

SIL - Software-in-the-Loop

TAM - Technology Acceptance Model

VM - Virtual Module

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Synopsis Biodata of Respondents 80

B Virtual Module Guidelines 82

C Demography Questions for Respondents 84

D Technology Acceptance Questionaire 85

CHAPTER 1

INTRODUCTION

1.1 Overview

In the current age of globalization, being able to rapidly respond to customers’

requests is fundamental to win against competitors and gain new customers. It is about

speed and cost, which means that being able to respond fast and contain costs

(Sangregorio, 2015), but this is sometimes at the expense of quality. In a manufacturing

company, the production relies heavily to automated software to test their products. A

downtime to debug the faulty software would take adequate amount of time, thus could

lead to missed production shipments. At worst, a buggy software can be released in

production, which will lead the company to ship bad units to customer, and the customers

will validate the units then catch the bad units, this will cause the company a lot of money

and bad reputation among its customers.

Software testing is an important process in the software development life cycle,

because it improves the quality of the software in terms of security, reliability,

performance, and compatibility. It is commonly believed that the earlier a software bug

is found, the cheaper it is to fix it.

Having an establish software testing system for the production software will

definitely help prevent buggy software to be released in the production line. Though the

2

idea of producing bug-free software is not possible, software testing can assess the level

of reliability of the software, accordingly will give the confidence on the software.

The amount of time required for software development determines how rapidly a

new products can be introduced. The developed software shall be tested on the

workstation to be validated, but as more verification tests are done, more down time is

induced to the workstation, thus hindering production output. In order to accommodate

the rapid product development, the virtual testing concept is to be used, which allow

testing of the software under a simulated environment.

1.2 Problem Background

Depending on the products produced, manufacturing companies nowadays

utilizes the current generation’s computational power available, which are far more

dominant than few decades back to assemble, calibrate, and validate their products. Car

manufacturers uses robotics to assemble their car products. Semiconductor companies

uses test boards and apparatus to calibrate and verify their products. This additional

computational power has enabled software to perform complex application (Nouman et

al, 2016).

Software applications are used to automate manufacturing processes. It has been

the integral part of the modern industrial manufacturing plant. There are a number of

reasons why to automate manufacturing processes. It improves worker’s safety as

machines will substitute human workers from a dangerous environment. It reduces labor

cost, as machine can replace human at certain processes. It will also increase production

output as there will be no idle time for the machine. It will also improve product quality

as it will eradicate human error, which is cause by manual routines that makes workers

bored.

3

As workers’ jobs are passed on to the machines, the responsibility to perform the

job accurately is passed on to the software developers. Software developers are human

too and can also make mistakes, so the automation software they do are not perfect as

well. There will be bugs in the software that may cause quality issue or cause a production

line to be down. That’s why software applications must be validated and verified at a

certain requirement level prior to be release for production usage.

There are challenges in testing automated software application in the production

line. The table below shows some of the problems and reasons encountered in the

production line.

Problems Reasons

Limited Time Production machine is for production output

Limited Resources Not all equipment and devices will have extra

for debugging and development purposes

Few manpower for numerous diverse products

Replication of bugs and errors Some bugs are hard to replicate in real

machines as it needs to perform certain

actions at certain sequence

Potential damage to products Repeated testing on the same product will

deteriorate the product and may change its

characteristics already

Virtual prototyping can be an alternative or complement to the real manual testing

to resolve such problems (Kim et al, 2017). There are already existing and proposed

methods in performing virtual prototyping. Some even already has the available tools in

performing it, especially for car manufacturers and embedded systems. MATLAB and

National Instruments are few examples of the virtualization tool that already contains

software replications of cars and embedded systems, so the only focus of the user is to

perform tests on their software.

4

1.3 Problem Statement

Finisar manufactures a variety of optical product and is in a continuous research

to provide new ones and growing requirements of the customers. Software automation

enables each product to be manufactured efficiently and with quality, however, as new

variety products are introduced and growing requirements, the software will also undergo

in a continuous development as well. Along with supporting the new requests, the

software should still be able to support legacy product requirements, and this is where the

company falls short.

The automated manufacturing software used in Finisar is called ParTest, which is

used to calibrate and test the optical transceivers. The software runs in a host PC and

communicates with the transceiver modules through a device-under-test (DUT) board,

and then controls several other instruments to measure the transceiver modules

characteristics. The typical setup can be seen in Figure 1.1. When the software is released

in the production line, operators will scan the barcode of the transceiver module and plug

the transceiver module to the DUT board to start testing. The scanning of the barcode will

let ParTest identify what type of process step need to be performed then waits for the

transceiver modules to be inserted.

Figure 1.1 Finisar’s typical tester setup

5

New products will also use the same software to perform product testing. Most of

the time, these new products share the same characteristics of the old products, so they

can reuse the same set of codes, but some will have new requirement as well, thus will

need new iteration of software release. New release of ParTest is either due to new set of

codes or code modification. With code modification, it will need to be tested for the new

requirement as well as the old requirements as it can change the old behavior, thus

software testing is necessary.

Manual testing of ParTest consumes a lot of time to perform, as it needs to wait

for a testing setup to be available, and with a variety of products for ParTest to be verified

with, it will be an unending task. Replication of bugs and error is also time consuming as

the user will need to perform certain tasks at specific sequence to repeat error, and

sometimes it still does not appear. A developer will perform the required code changes to

the software, borrows a production tester, test the code changes, debug errors and issues

encountered, then finally release back the production tester along with the new software.

This is the typical flow for the developer to validate the software for the product using

the new software features, but not for the legacy products.

Unlike car manufacturers or embedded system, there is no ready testing system

software for optical transceivers like MATLAB, which has the tools and virtual

representation of the components needed. However, similar approach can be used to test

ParTest, in which devices and equipment used by ParTest will be virtualized, so it can be

tested in a virtual or simulated environment.

Regression tests need to be perform for the legacy product to have the confidence

to use the newly released software. With virtualization, this can be done easily in a non-

production tester, avoiding the difficulty of long duration of manual testing of thousands

of products. A developer creating a new code for a new product can test ParTest in a real

set of hardware, but may test legacy products in the simulated environment for backward

compatibility.

6

The virtual prototyping method is usually done in embedded system and also

usually on a fresh software. In this study, we are trying to use the same method, but under

a different circumstances. The software to be tested, ParTest, is not an embedded system

program nor is a fresh software. Code modification of ParTest for this study is allowed

and need to done in order to perform software testing in a virtual environment.

Therefore, the research question is “Does the virtual environment approach

suitable for manufacturing software under the environment that is similar to Finisar?”

1.4 Research Aim and Objectives

The aim of this research is to propose a software testing system for manufacturing

software, which is suitable for Finisar environment, in order to test the software without

any usage of physical hardware or equipment.

This research consists set of objectives to be achieved that lead to the research

process:

 To identify the software testing method to be used for testing Finisar’s

manufacturing software, ParTest, which will overcome the current issues and

limitations.

 To propose and apply a testing system using the selected software testing

method and implements the system to ParTest.

 To evaluate and validate the proposed software testing system’s usability with

ParTest as the subject of the proposed system.

7

1.5 Scope

This research is meant for improving the quality of the manufacturing software

under the Finisar environment. In Figure 1.2, it shows the different processes a transceiver

module goes through, and each process requires the use of ParTest. The scope of the study

will be the following:

 This study only focuses on the software testing method for a manufacturing

software, similar to Finisar, leaving out the rest of areas, such as test case

generation.

 This study only focuses on a single process of transceiver module testing, the

LABEL process, to limit the number of involved instruments.

 This study only focuses on a functional testing (Black-Box), validating that

the software output is the expected output.

1.6 Significance of Study

This study is intended to help create a software testing system specifically for

Finisar manufacturing site and other industries with the similar environment of limited

resources. Development and testing of software application in manufacturing site will

have reduce downtime in the production line. It helps start the development of the

software even though the hardware is not yet complete as long as the hardware

capabilities are defined.

8

1.7 Dissertation Organization

This research paper is made up of seven chapters. In the Chapter 1, it discusses

the research introduction, problem background, problem statement, research aims,

research goals, scope, and significance of the study. In the Chapter 2, it presents the

overview of software testing and further discussion on chosen methods of software-in-

the-loop, virtual environment, and virtual prototyping. In the Chapter 3, the research

methodology is detailed. In the Chapter 4, the proposed testing system and its framework

is discussed and detailed. In the Chapter 5, a couple of case study is performed and

analyzed. In the Chapter 6, the evaluation of the testing system is discussed. In the

Chapter 7, the conclusion and results of this research paper is discussed.

77

REFERENCES

Abdullah, M. Z. T. & Mahrin, M. N. B., (2011), Component Based Testing for Vision

System Development Platform (VSDP), MSc Thesis, Universiti Teknologi,

Malaysia.

Alvares, M., Marwala, T. & de Lima Neto, F. B., (2013), Applications of Computational

Intelligence for Static Software Checking Against Memory Corruption

Vulnerabilities, Computational Intelligence in Cyber Security, 16-19 April

As’sahra, N. F., (2015), Test Case Prioritization Technique Using Sequence Diagram and

Labeled Transition Systems in Regression Testing, MSc Thesis, Universiti

Teknologi, Malaysia

Bennett, T. & Wennberg, P., (2003), Maintaining Verification Test Consistency Between

Executable Specifications and Embedded Software in a Virtual System

Integration Laboratory Environment, 28th Annual NASA Goddard Software

Engineering Workshop, page 1-8

Bhattacharya, S., Kanjilal, A. & Sengupta, S., (2010), Tools and Techniques for Model

Based Testing, Handbook of Research on Software Engineering and Productivity

Technologies: Implications of Globalization, page 226-249

Casolino, G. M., Tir, M. A., Andreoli, A., Albanesi, M., & Marignetti, F., (2016),

Software-in-the-loop Simulation of a Test System for Automotive Electric Drives,

IEEE, page 1882-1887

Demers, S., Gopalakrishnan, P. & Kant, L., (2007), A Generic Solution to Software-in-

the-Loop, Applied Research, Telcordia Technologies

Ekssan, S. N. B. M., (2017), Enhanced Educational Robotics Feature Model With

Pedagogical Element in Software Product Line, MSc Thesis, Universiti

Teknologi, Malaysia

78

Elhagari, U. T. F., (2015), A Model-Based Testing Framework for Trusted Platform

Module, Phd Thesis, Universiti Teknologi, Malaysia

Jones B., (2001), The Automation of Software Validation using Evolutionary

Computation. Telecommunications Optimization: Heuristic and Adaptive

Techniques, John Wiley & Sons, page 265-283

Kapur, P., Singh, G., Sachdeva, N. & Tickoo, A., (2014), Measuring Software Testing

Efficiency Using Two-Way Assessment Technique, Infocom Technologies and

Optimization, 3rd International Conference, 8-10 October, page 1-6

Kim, B. G., Kashiba, Y., Dai, S. Y. & Shiraichi, S., (2016), Testing Autonomous Vehicle

Software in the Virtual Prototyping Environment, IEEE Embedded Systems

Letter, March 2017, page 5-8

Liu, H., Jin, M. & Liu, C., (2010), Construction of the Simulating Environment for

Testing Distributed Embedded Software, Computer Science and Education in 5th

International Conference, 24-27 August, page 97-101

Luo, L., (2001), Software Testing Techniques: Technology Maturation and Research

Strategy, page 1-20

Mutter, F., Gareis, S., & Schatz, B., (2011), Model-Driver In-the-Loop Validation:

Simulation-Based Testing of UAV Software Using Virtual Environments, 2011

18th IEEE Internation Conference and Workshops on Engineering of Computer-

Based Systems, page 269-275

Nouman, M., Pervez, U. & Hasan, O., (2016), Software Testing: A Survey and Tutorial

on White and Black-Box Testing of C/C++ Programs, Region 10 Symposium

(TENSYMP), 9-11 May, page 225-230

Palmieri, M., (2012), System Testing in a Simulated Environment, MSc Thesis,

Mӓlardalen University, Sweden

Sangregorio, P., Cologni A. L. & Previdi, F., (2015), Modular Automatic Generation of

Automation Software for Manufacturing Machines, Research and Technologies

for Society and Industry Leveraging a better tomorrow (RTSI), 16-18 September

SFF Committee, (2001), INF-8074i Specification for SFP (Small Formfactor Pluggable)

Transceiver Rev 1.0, 12 May.

79

Zulkefli, H.S., (2004), “Engineering Maintenance System (EMESYS) Maintenance

Module Using .Net Platform”, Master Degree Award, August, Centre for

Advanced Software Engineering, Universiti Teknologi Malaysia, Pages 1-106

