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1. Introduction

Electrical power transmission and distribution network need to be expanded as the demand and dependencies on
electricity is increasing [1] [2] [3]. This results to more complex transmission and distribution network. Power
providers need to cater customer demands for a continuous supply without interruptions. Fault occurrences may lead to
power system failure. An effort on how to overcome and prepare for fault in maintaining system security becomes an
extremely important task.

It is necessary to foresee the interruptions that may occur in the distribution system by detecting failures and to
isolate only the faulty sections. Fault location identification need to be accurate to ensure safe and good selectivity of a
protection scheme. Identification need to be fast for any protection actions or measures to be taken in a faulty power
system. There are many method found to be effective in fault location identification. Impedance-based method and
travelling wave method are some example of methods which have been developed in previous studies [5] [6] [7].
However, with advancement in microprocessor and computer technology nowadays, fault location detection method
has been evolving from conventional analysis method to a better method, using artificial intelligence (AI). AI
application has been recently increased due to its accuracy and fast response time.

Based on statistics of previous study on asymmetrical faults, more than 70% of faults occurring in distribution
system are single-line-to-ground (LG) faults [6]. Based on this statistical figure, priority to solve LG fault location and
identification issue is higher than other type of faults.
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Meanwhile, installation of on-grid renewable energy system led to introduction of Distributed Generation (DG) into
national electricity grid. DG is an installation of a generating unit at a strategic point of location [8], purposely to let
electricity distribution to be more dynamic and efficient. With DGs, electricity delivery losses can be reduced
(increased reliability) [9], and in some countries, consumer can enjoy benefit by selling excess power to grid [10].

There are four main categories in fault location detection method; technique based on impedance measurement [5]
[6], technique based on travelling-wave phenomenon [4] [7] [14] [15] [16], technique based on currents and voltages
high frequency components and knowledge-based technique [11] [12] [17] [18].

Artificial Neural Network (ANN) and fuzzy logic are among the best example of knowledge-based technique in
automated fault location detection.

Author [12] and [18] suggested that voltage sag can be an indicator for fault location detection. Author [18]
suggested a method applying ANN with Levenberg-Marquardt Back propagation method to detect fault location in a
transmission network. Voltage deviation index has been calculated and been used to train ANN via MATLAB. In [12],
author also suggested to consider voltage sag by voltage deviation index as a figure to determine fault location. Radial
Basis Function Neural Network (RBFNN) has been proposed because it can generate fast and accurate results. Voltage
deviation index has been used to train RBFNN via MATLAB. Even by applying different algorithm concept of ANN
application, both [12] and [18] shows a very high accuracy in result.

However, in a radial distribution network, consideration of only voltage value to determine fault location was found
to be not suitable. In a ring distribution system, pre-fault voltage at all feeders may be considered at the same
magnitudes. Therefore, any voltages disruption or fluctuation due to fault in a ring system can be identified clearly. On
the other hand, in a radial distribution network where the pre-fault voltage value of all bus was not same; dropped as
bus distance from source is increased, voltage fluctuation or disruption due to fault may be difficult to distinguish.

RBFNN approach for fault location scheme by fault current level measurement in a distribution network with DGs
has been suggested in [11]. Three stage of RBFNN has been developed. The first stage is to determined type of fault by
normalized current calculation. The second stage is to determine fault location and the third stage to activate which
circuit breaker to isolate the faulty line. Fault location detection algorithm is by applying back propagation method.
However, huge quantity of monitor may be required for data capturing to implement the suggested scheme into actual
network which may consists of hundreds or thousands of buses. Monitor placement method has been proposed on [13].
By considering monitor placement, monitor quantity to estimate fault location in system was expected can be
minimized.

ANN was chosen as a method for fault location detection for this study considering low accuracy of other fault
location detection technique compared to knowledge-based technique, and to achieve fast computation time to locate
fault. Furthermore, due to Radial Basis Neural Network (RBFNN) performance which can produce more fast and
accurate result compared to other ANN method, RBFNN is proposed to be applied in this study. In addition, to obtain a
cost friendly fault location detection scheme for the industry, monitor placement has been considered to minimize
monitor placement quantity.

2.    Methodology

Four types of test models have been applied in developing and verifying RBFNN for current magnitude prediction
at buses during LG fault. Fault analysis has been carried out using Power World simulator, and RBFNN has been
developed using nntool of MATLAB. RBFNN prediction results have been evaluated statistically using SSE, R2 and
RMSE. Prediction data were then arranged into table. Data pattern has been analyzed in order to identify the faulty bus
in a radial distribution system.

2.1 Test Model
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Figure 1 shows type of test model which has been applied in developing the proposed method. Total four types of
test models have been applied.

2.1.1 10 Bus Single Radial Distribution System Without DG

The 10 bus single radial distribution test network was based on the work of R. S. Rao et al [19]. Loads and lines
data also can be found in [19].

2.1.2  10 Bus Single Radial Distribution System With DG

One unit DG has been added into bus 10 of previous 10 bus single distribution system to simulate a system with DG
presence. Figure 2 shows a single line of 10 bus single radial distribution test network with presence of one unit DG.
DG parameter for this model as per shown in Table 1. Load and line data for this test system are similar with 10 bus
single radial distribution without DG network as per shown in [19].

Table 1.   DG parameter for 10 bus single radial distribution system with DG
DG real power [MW] 0.5
DG reactive power [Mvar] 0.37
Connecting bus Bus 10

2.1.3  34 Bus Radial Distribution System Without DG

The third test model is 34 bus radial distribution system without DG [20]. This 11kV system has one source and
four branches. The lines and loads data are based on reference [20].

2.1.4  34 Bus Radial Distribution System With DGs
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The single line diagram of 34 bus radial distribution system with DG is depicted in Figure 3. DGs parameters for
this system are shown in Table 2. Meanwhile, load and line data for this test system are similar with 34 bus radial
distribution system without DG as per reference [20].

Table 2 DG parameter for 34 bus radial distribution system with DGs
DG

number
Connect

bus number
PDG

[MW]
QDG

[Mvar]
1 12 0.50 0.37
2 16 0.50 0.37
3 21 0.50 0.37
4 27 0.50 0.37
5 30 0.50 0.37
6 34 0.50 0.37

2.2  Power World Simulation

Fault analysis has been conducted using Power World simulator for the above four test models in order to obtain
current magnitude value at all buses during LG fault. Fault analysis was carried out with pre fault profile of Flat
IEC-909, and voltage setting 1.0000 p.u.

Fault analysis was repeated with fault resistance (Rf) value of 0 Ω (bolted fault), 0.05 Ω, 0.1 Ω, 0.15 Ω, 0.2 Ω and
0.25 Ω. While for 34 bus radial distribution with DGs only, fault analysis was repeated with fault resistance (Rf) value
of 0 Ω (bolted fault), 0.05 Ω, 0.1 Ω, 0.15 Ω, 0.2 Ω, 0.25 Ω and 0.3 Ω.

2.3  RBFNN Development
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RBFNN has been developed using neural network toolbox (nntool) via MATLAB R2013a software. Exact radial
basis (newrbe) function analysis has been applied for development. Three parameters was set in developing RBFNN,
namely input vector, output vector and spread constant.

Figure 4 shows overall process flow in developing the faulty bus detection scheme for this study. Current magnitude
at buses data (obtained from Power World simulator fault analysis) has been arranged into table accordingly in order to
identify pattern of data. Considering system topology and current magnitude pattern, monitored and unmonitored buses
has been selected. Monitored buses data will be applied as input vector, while unmonitored buses data will be applied
as output (or target) vector for RBFNN training. In application, the proposed RBFNN will need to predict unmonitored
buses current magnitude by only few monitored buses current magnitude. To have a greater accuracy of predicted data,
the most suitable spread constant for the proposed RBFNN has been selected.

Current magnitude data with various Rf has been applied for RBFNN training as per below Table 3. Meanwhile,
monitored bus data of Rf 0.15 Ω has been used as test sample to verify the trained RBFNN whether it can accurately
predict unmonitored buses current magnitude values or not.
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Table 3.  Data for RBFNN training and testing
Test model RBFNN

training data
RBFNN

testing data
10 bus without DG
10 bus with DG
34 bus without DG

Current
magnitude
data of;
Rf = 0 Ω
Rf = 0.05 Ω
Rf = 0.1 Ω
Rf = 0.2 Ω
Rf = 0.25 Ω

Current
magnitude
data of;
Rf = 0.15 Ω

34 bus with DG Current
magnitude
data of;
Rf = 0 Ω
Rf = 0.05 Ω
Rf = 0.1 Ω
Rf = 0.2 Ω
Rf = 0.25 Ω
Rf = 0.3 Ω

Current
magnitude
data of;
Rf = 0.15 Ω

2.4  Results Evaluation

In order to obtain a RBFNN which can accurately predict unmonitored buses current magnitudes, the spread
constant need to be chosen correctly. The spread constant values have been selected based on the best sum of square
error (SSE), coefficient of determination (R2) and root mean square error (RMSE) results among all tested spread
constant values. SSE, R2 and RMSE have been calculated by the following formulae [21];
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𝑖=𝑛

𝑛

∑ (ŷ
𝑖

− 𝑦
𝑖
)2

(2.2)𝑅2 = 1 −  𝑖

𝑛

∑(ŷ
𝑖
−𝑦

𝑖
)2

𝑖=𝑛

𝑛

∑ (ŷ
𝑖
−ẏ

𝑖
)2

(2.3)𝑅𝑀𝑆𝐸 = 𝑖=𝑛

𝑛

∑ (ŷ
𝑖
−𝑦

𝑖
)2

𝑛

Where,

ŷ
𝑖
 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑣𝑎𝑙𝑢𝑒

ẏ
𝑖
 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑦
𝑖
 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑣𝑎𝑙𝑢𝑒

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

Statistically, SSE and RMSE should be close to zero “0” and R2 should be close to one “1” to prove that predicted
data were accurate (RBFNN predicted values are close to the Power World simulated values).
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To identify faulty bus, predicted current magnitude values of unmonitored buses during LG fault has been arranged
into table. Predicted data should show a pattern to help identify faulty bus.

3.  Results and Discussion

The proposed fault detection scheme was tested on 10 bus and 34 bus radial distribution system with and without
DGs. Data sets of current magnitude at buses during LG fault was generated using fault analysis via Power World
simulator. Generated data then has been used to develop RBFNN, and some consideration has been made to minimize
monitor placement in the test system. Fault location detection has been performed in term of faulty bus identification.

3.1  10 Bus Single Radial Distribution System Without DG

Six data sets with various Rf has been generated using Power World fault analysis. Five data sets have been used for
RBFNN training, while 1 data set has been used for RBFNN testing.

It was observed that, in a 10 bus system without DG, the highest observed current magnitude was during LG fault
(Rf = 0 Ω) at bus 1, which was 1.000 p.u. Meanwhile, the lowest current magnitude was observed during LG fault (Rf =
0.25 Ω) at bus 10, which was 0.03174 p.u.

Referring to Appendix A Table A1, when LG fault (Rf = 0 Ω) was simulated at bus 1, monitor at bus 1 was showing
1.000 p.u, and monitor at bus 2 to 10 were showing 0 p.u. current magnitudes (see column 1). From all data sets, it can
be observed that buses which comes after faulty bus show zero “0” p.u current magnitudes. All data sets are showing
similar current magnitude pattern at buses during LG fault.

Figure 5 shows an explanatory image of current flows during fault in a single source radial distribution system
without DG, while Figure 6 shows current magnitude at all buses during LG fault (Rf = 0) was simulated at bus 6. It
was proved by fault analysis in Power World simulator that, in a single source radial distribution system without DG,
fault current contribution can be seen only from source. As the faulted bus is shorted to the ground, current magnitude
at buses which appear after the faulty bus will show zero p.u. current magnitude.

52

Journal of Tomography System & Sensors Application



TSSA Journal of Tomography System & Sensors Application Vol.4, Issue 2, Year 2021
www.tssa.com.my e-ISSN: 636-9133

As mentioned in previous section, RBFNN will need to predict unmonitored buses current magnitude by only few
given magnitude of monitored bus. Bus 1 has then been selected as the only monitored bus needed based on current
magnitude pattern shown in all data set with different Rf.

If only consider monitoring values at bus 1, current magnitude can be seen becomes smaller as the faulty bus
location becomes further from the source (see row 1 of Table A1 Appendix A). When LG fault was simulated at bus 1,
monitor at bus 1 shows 1.000 p.u., and when LG fault was simulated at bus 10, monitor at bus 1 shows 0.032 p.u.
RBFNN will be trained to predict bus 2 to 10 current magnitudes by monitor placement at bus 1 alone. In this case, bus
1 will be set as monitored bus, while bus 2, 3, 4, 5, 6, 7, 8, 9, and 10 will be set as unmonitored buses.

RBFNN was then developed using nntool in MATLAB. Figure 7 shows the structure of RBFNN for 10 bus system
without DG with 1 unit monitor placement. The numbers of neuron for input and output layers are 1 and 9, respectively.
The hidden layer of radial basis contains 50 neurons while linear layer contains 9 neurons.

Table 4 shows the performance analysis of the developed RBFNN for various values of spread constant. The best
spread constant for 10 bus system without DG was found to be 0.1. The best performance shows result of 2.86E-04 for
SSE, 0.9998 for R2 and 1.80E-03 for RMSE. Figure 8 shows regression plots of spread constant of 1 and 0.1 for the
developed RBFNN with simulated data in x-axis and predicted data in y-axis. Referring Figure 8 (b), predicted data can
be seen fit the simulated data with spread constant 0.1.

Table 4. RBFNN performance for 10 bus system without DG with different spread constant
Spread

constant SSE R2 RMSE

100 2.36E-01 0.7352 5.17E-02
50 4.11E-02 0.9644 2.16E-02
1 1.06E-02 0.9912 1.10E-02

0.5 2.64E-03 0.9978 5.48E-03
0.1 2.86E-04 0.9998 1.80E-03

Based on above results with spread constant of 0.1, RBFNN has predicted current magnitude for bus 2 to bus 10 for
10 bus system without DG accurately. Comparison of Table 5 and 6 shows that predicted current magnitude values in
diagonal were very close to the simulation values. In addition, considering pattern of predicted current magnitude at
buses, it can be seen that it is possible to identify faulty buses with the proposed RBFNN predicted data.
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3.2  10 bus single radial distribution system with DG

Similar to previous model’s approach, six data sets with various Rf has been generated using Power World fault
analysis. Five data sets have been used for RBFNN training, while 1 data set has been used for RBFNN testing.

It was observed that, in a 10 bus system with DG, the highest observed current magnitude was during LG fault (Rf =
0 Ω) at bus 1, which was 1.024 p.u. Meanwhile, the lowest current magnitude was observed during LG fault (Rf = 0.25
Ω) at bus 6, which was 0.147 p.u.

Referring to Appendix B Table B1 (Rf = 0 Ω), when LG fault was simulated at bus 2 (see column 2), monitor at bus
1 was showing 0.8048 p.u, monitor at bus 2 shows 0.829 p.u., and monitor at bus 3 to 10 were showing 0.03697 p.u.
current magnitudes. Based on these patterns, faulty buses can be identified by looking at the highest current magnitude
in the column.

In a radial system with DG, fault current also being contributed by DG which exists in the system. Figure 9 explains
about fault current flows in a system with one source and one DG. It can be seen that, fault current magnitude flowing
through the faulty bus is the sum of current from source and DG during fault occurrence. This phenomenon has been
proved by data generated by fault analysis which was performed earlier, as per shown in Figure 10.

Table 5. Simulated data of 10 bus system without DG for RBFNN test sample (Rf = 0.15Ω)
Faulty bus

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8 Bus 9 Bus 10
M
o
n
i
t
o
r
i
n
g
a
t
b
u
s

Bus 1 0.989 0.79435 0.46265 0.23905 0.18411 0.1087 0.09123 0.06994 0.04478 0.03182
Bus 2 0 0.79435 0.46265 0.23905 0.18411 0.1087 0.09123 0.06994 0.04478 0.03182
Bus 3 0 0 0.46265 0.23905 0.18411 0.1087 0.09123 0.06994 0.04478 0.03182
Bus 4 0 0 0 0.23905 0.18411 0.1087 0.09123 0.06994 0.04478 0.03182
Bus 5 0 0 0 0 0.18411 0.1087 0.09123 0.06994 0.04478 0.03182
Bus 6 0 0 0 0 0 0.1087 0.09123 0.06994 0.04478 0.03182
Bus 7 0 0 0 0 0 0 0.09123 0.06994 0.04478 0.03182
Bus 8 0 0 0 0 0 0 0 0.06994 0.04478 0.03182
Bus 9 0 0 0 0 0 0 0 0 0.04478 0.03182

Bus10 0 0 0 0 0 0 0 0 0 0.03182
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Table 6. RBFNN predicted data of 10 bus system without DG for RBFNN test sample (Rf = 0.15Ω)
Faulty bus

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8 Bus 9 Bus 10
M
o
n
i
t
o
r
i
n
g
a
t
b
u
s

Bus 1 0.989 0.79435 0.46265 0.23905 0.18411 0.1087 0.09123 0.06994 0.04478 0.03182
Bus 2 0 0.7944 0.4627 0.2391 0.1841 0.1087 0.0912 0.0699 0.0448 0.0318
Bus 3 0 0 0.4626 0.239 0.1841 0.1087 0.0912 0.0699 0.0448 0.0318
Bus 4 0 0 0 0.239 0.1841 0.1087 0.0912 0.0699 0.0448 0.0318
Bus 5 -0.0011 0.0002 0 -0.0001 0.1843 0.1087 0.0912 0.0699 0.0448 0.0318
Bus 6 -0.0008 0.0002 0 0 -0.0001 0.1087 0.0912 0.0699 0.0448 0.0318
Bus 7 -0.0147 0.003 0 -0.0001 -0.0005 0.0005 0.092 0.0696 0.0448 0.032
Bus 8 0.0069 -0.0014 0 0 0.0002 0 0.0002 0.0703 0.0447 0.0317
Bus 9 -0.0025 0.0005 0 0 -0.0001 0 0 0.0001 0.0448 0.0318

Bus10 0.0016 -0.0003 0 0 0 0 0 0 0.0001 0.0319

Based on result observed in Figure 10, to predict all buses current magnitude during fault, two monitor placement
need to be performed. One unit monitor need to be placed at bus 1 (near to the source) in order for RBFNN to
accurately predict current at bus 1 to bus 5. While another one unit monitor need to be placed at bus 10 (near to DG) for
accurate current magnitude’s prediction for bus 7 to bus 10. Therefore, in 10 bus system with DG, bus 1 and bus 10 will
be set as monitored bus, while bus 2, 3, 4, 5, 6, 7, 8, and 9 will be set as unmonitored buses.
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Figure 11 shows the structure of RBFNN for 10 bus system with DG with 2 unit monitor placement. The numbers
of neuron for input and output layers are 2 and 8, respectively. The hidden layer of radial basis contains 50 neurons
while linear layer contains 8 neurons.

Table 7 shows the performance analysis of the developed RBFNN for various values of spread constant. The best
spread constant for 10 bus system with DG is found to be 0.5. The best performance shows result of 4.87E-04 for SSE,
0.9994 for R2 and 2.50E-03 for RMSE. Figure 12 shows regression plots of spread constant of 1 and 0.1 for the
developed RBFNN. Referring Figure 12, predicted data can be seen most fit the simulated data with spread constant
0.5.

Table 7. RBFNN performance for 10 bus system with DG with different spread constant
Spread

constant SSE R2 RMSE

100 4.01E-01 0.4823 6.75E-02
50 3.20E-01 0.7143 6.03E-02
1 2.02E-01 0.8523 4.79E-02

0.5 8.06E-02 0.9464 3.03E-02
0.1 4.74E+00 0.2254 2.32E-01

With spread constant of 0.5, RBFNN has predicted current magnitude for bus 2 to bus 9 of 10 bus system with DG
almost accurately. Comparison of Table 8 and 9 shows that diagonal predicted current magnitude values were very
close to the simulation values. Diagonal current values shows maximum values compared to other magnitudes in the
same column – which will indicates faulty bus. Based on pattern of predicted current magnitude at buses, it can be seen
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possible to identify faulty buses using the predicted data. It was proven that fault detection in term of faulty bus can be
identified by current magnitude pattern at buses during fault with only two monitor placements in system with DG.

Table 8. Simulated data of 10 bus system with DG for RBFNN test sample (Rf = 0.15Ω)
Faulty bus

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8 Bus 9 Bus 10
M
o
n
i
t
o
r
i
n
g
a
t
b
u
s

Bus 1 1.008 0.78992 0.45964 0.23721 0.18263 0.10778 0.09044 0.06932 0.04439 0.03735

Bus 2
0.03704

1
0.81359

2
0.45957

4
0.23718

7
0.18261

8
0.10778

4
0.09044

5
0.06932

7
0.04437

8
0.03738

4

Bus 3
0.03736

6
0.03625

2
0.48229

9
0.23722

2
0.18263

4
0.10777

1
0.09043

2 0.06931 0.04441
0.03727

6

Bus 4
0.03769

3
0.03630

5
0.03428

1
0.26549

7 0.18246
0.10773

3
0.09042

6
0.06930

6
0.04412

3
0.03725

4

Bus 5
0.03558

1 0.03613
0.03889

5
0.03681

7
0.21589

4
0.10806

3
0.09049

8
0.06941

5
0.04617

7
0.04063

9

Bus 6
0.03988

1
0.03655

6
0.02992

2
0.03354

6
0.03539

4
0.14737

7
0.09014

7
0.06893

4
0.04042

2
0.02802

3

Bus 7
0.03404

1
0.03587

5 0.04219
0.03929

6
0.03986

7
0.04408

9 0.13499
0.07004

3
0.05100

1
0.05337

7

Bus 8
0.03794

9 0.03641 0.03375
0.03486

4
0.03636

8
0.04231

9
0.04595

5
0.12308

9
0.04265

6
0.03296

5

Bus 9 0.03736
0.03628

9
0.03511

6
0.03571

9
0.03707

6
0.04265

3
0.04610

2
0.05490

5
0.14495

4
0.03771

1
Bus1

0 0.03735 0.03628 0.03511 0.03572 0.03706 0.04268 0.04609 0.05493 0.10062 1.008

Table 9. RBFNN predicted data of 10 bus system with DG for RBFNN test sample (Rf = 0.15Ω)
Faulty bus

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8 Bus 9 Bus 10
M
o
n
i
t
o
r
i
n
g
a
t
b
u
s

Bus 1 1.008 0.78992 0.45964 0.23721 0.18263 0.10778 0.09044 0.06932 0.04439 0.03735

Bus 2
0.03704

1
0.81359

2
0.45957

4
0.23718

7
0.18261

8
0.10778

4
0.09044

5
0.06932

7
0.04437

8
0.03738

4

Bus 3
0.03736

6
0.03625

2
0.48229

9
0.23722

2
0.18263

4
0.10777

1
0.09043

2 0.06931 0.04441
0.03727

6

Bus 4
0.03769

3
0.03630

5
0.03428

1
0.26549

7 0.18246
0.10773

3
0.09042

6
0.06930

6
0.04412

3
0.03725

4

Bus 5
0.03558

1 0.03613
0.03889

5
0.03681

7
0.21589

4
0.10806

3
0.09049

8
0.06941

5
0.04617

7
0.04063

9

Bus 6
0.03988

1
0.03655

6
0.02992

2
0.03354

6
0.03539

4
0.14737

7
0.09014

7
0.06893

4
0.04042

2
0.02802

3

Bus 7
0.03404

1
0.03587

5 0.04219
0.03929

6
0.03986

7
0.04408

9 0.13499
0.07004

3
0.05100

1
0.05337

7

Bus 8
0.03794

9 0.03641 0.03375
0.03486

4
0.03636

8
0.04231

9
0.04595

5
0.12308

9
0.04265

6
0.03296

5

Bus 9 0.03736
0.03628

9
0.03511

6
0.03571

9
0.03707

6
0.04265

3
0.04610

2
0.05490

5
0.14495

4
0.03771

1
Bus1

0 0.03735 0.03628 0.03511 0.03572 0.03706 0.04268 0.04609 0.05493 0.10062 1.008

Similar approach has been applied and tested on 34 bus radial distribution systems. In 34 bus systems, due to the
existence of several branches in system, network zoning becomes important to let RBFNN accurately predict current
magnitude at unmonitored buses.

3.3  34 Bus Radial Distribution System Without DG

Two types of 34 bus radial distribution system have been tested, namely 34 bus system without DG and 34 bus
system with DGs. These test models are single source models and consists of four branches. Approach in fault location
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detection in term of faulty bus for both systems has been discussed and method of fault detection using RBFNN for
each system has been proposed.

Six data sets with various Rf has been generated using Power World fault analysis for 34 bus system without DG.
Five data sets have been used for RBFNN training, while one data set has been used for RBFNN testing.

Network zoning has been performed based on consideration of; one zone shall consist of one current source during
fault. For example, consider that LG fault has occurred at bus 15. In this case, current will flow from source, flowing
through bus 13, bus 14, bus 15 and finally to the ground. Bus 13 is the first bus in the branch, so bus 13 is considered as
current source bus during fault occurrence. Therefore, Zone 2 will cover from bus 13 which is current source bus until
bus 16 which is the last bus in the particular branch. Figure 13 shows zoning for 34 bus network without DG. The 34
bus system without DG has been divided into five network zones. Table 10 shows network zoning and related bus
number for this network.

Table 10. Network zoning for 34 bus radial system without DG
Zone Bus number

1 Bus 1 – Bus 12
2 Bus 13 – Bus 16
3 Bus 17 – Bus 27
4 Bus 28 – Bus 30
5 Bus 31 – Bus 34

All possible current flows during fault need to be identified in order to select the most suitable monitored buses.
Monitored buses shall be buses which will act as current source during fault. There are five current source buses in this
network, namely bus 1, bus 13, bus 17, bus 28 and bus 31. Table 11 shows monitored and unmonitored buses for each
zone.

Table 11. Monitored and unmonitored bus for each zone of 34 bus system without DG

Zone Monitored
bus number

Unmonitored bus
number

1 Bus 1 Bus 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12

2 Bus 13 Bus 14, 15, 16
3 Bus 17 Bus 18, 19, 20, 21, 22,

23, 24, 25, 26, 27
4 Bus 28 Bus 29, 30
5 Bus 31 Bus 32, 33, 34
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Figure 14 shows the structure of RBFNN for 34 bus system without DG with 5 unit monitor placement. The
numbers of neuron for input and output layers are 5 and 29, respectively. The hidden layer of radial basis contains 170
neurons while linear layer contains 29 neurons.

Table 12 shows the performance analysis of the developed RBFNN for various values of spread constant. Generally,
SSE and RMSE results were generally not good by all spread constant – shows that the predicted data were not fit with
the simulated data.

Table 12. RBFNN performance for 34 bus system without DG with different spread constant
Spread

constant SSE R2 RMSE

5 2.336 0.9224 4.87E-02
1 1.36 0.9558 3.72E-02

0.5 1.212 0.9613 3.51E-02
0.1 1.645E+03 0.0204 1.293
0.05 7.981E+05 0.0005 28.48

Figure 15 shows regression plots of spread constant of 0.05, 0.1, 0.5 and 1 for the developed RBFNN. Referring to
Figure 15, it can be observed that, RBFNN can’t correctly predict the simulated value of 0 p.u. magnitude for this
network. Data were extremely scattered for 0 p.u magnitudes, while RBFNN can be seen have no problem to predict
other magnitude values. To improve accuracy of results several trials and approaches have been taken such as; increase
training data sets, increase number of monitored buses, rearrangement of training input and target data. However, it was
found that the prediction of 0 p.u. magnitudes were still inaccurate. Further study need to be done to improve RBFNN
in order to increase accuracy of prediction for this network.
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3.4  34 Bus Radial Distribution System With DG

Seven data sets with various Rf has been generated using Power World fault analysis. Six data sets have been used
for RBFNN training, while one data set has been used for RBFNN testing.

Based on approach on network without DG for network zoning, similar approach has been taken to perform
network zoning for network with DG. Figure 16 shows zoning for 34 bus network with DG. The 34 bus system without
DG has been divided into six network zones. Table 13 shows network zoning and related bus number for this network.
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Table 13. Network zoning for 34 bus system with DG
Zone Bus number

1 Bus 1 – Bus 12
2 Bus 13 – Bus 16
3 Bus 17 – Bus 21
4 Bus 22 – Bus 27
5 Bus 28 – Bus 30
6 Bus 31 – Bus 34

As what has been learned in previous section, monitored buses shall be buses which will act as current source
during fault. There are twelve current source buses in this network, namely bus 1, 12, 13, 16, 17, 21, 22, 27, 28, 30, 31
and 34. Table 14 shows monitored and unmonitored buses for each zone. To achieve accurate result, 13 monitored
buses and 21 unmonitored buses for 34 bus network with DGs has been selected.

Table 14. Monitored and unmonitored bus for each zone of 34 bus system with DG

Zone Monitored
bus number

Unmonitored bus
number

1 Bus 1, 12 Bus 2, 3, 4, 5, 6, 7,
8, 9, 10, 11

2 Bus 13, 16 Bus 14, 15
3 Bus 17, 20, 21 Bus 18, 19
4 Bus 22, 27 Bus 23, 24, 25, 26
5 Bus 28, 30 Bus 29
6 Bus 31, 34 Bus 32, 33

Figure 17 shows the structure of RBFNN for 34 bus system with DG with 13 unit monitor placement. The numbers
of neuron for input and output layers are 13 and 21, respectively. The hidden layer of radial basis contains 204 neurons
while linear layer contains 21 neurons.
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Table 15 shows the performance analysis of the developed RBFNN for various values of spread constant. The best
spread constant for RBFNN in 34 bus system with DG is found to be 11. The best performance shows result of
4.38E-02 for SSE, 0.9958 for R2 and 7.84E-03 for RMSE.

Figure 18 shows regression plots of spread constant of 1, 5, 10 and 11 for the developed RBFNN. It can be observed
that, by changing spread constant for RBFNN, predicted data will scatter accordingly and accuracy of predicted data
changes.

Table 15. RBFNN performance for 34 bus system with DG with different spread constant
Spread

constant SSE R2 RMSE

15 8.28E-02 0.9920 1.08E-02
13 8.06E-02 0.9922 1.06E-02
12 4.54E-02 0.9957 7.98E-03
11 4.38E-02 0.9958 7.84E-03
10 4.42E-02 0.9958 7.88E-03
8 4.56E-02 0.9956 8.00E-03
5 5.71E-02 0.9946 8.95E-03
1 2.95E-01 0.9724 2.03E-02

The RBFNN predicted data then has been arranged into table to find faulty buses via pattern. The highest current
magnitude in column will indicate that the particular bus is a faulty bus. The predicted result for 34 bus network with
DG is given in Appendix C Table C1.

Referring to Table C1, all faulty buses were showing the highest magnitude of current compared to other buses in
the same column. It was shown that the faulty buses can be identified by the proposed approach by 100%.

It was found that it is possible to detect fault location in term of faulty bus by only several monitor placements in
distribution system for LG fault. In a network system with DG, additional monitor placements were required to achieve
greater accuracy in RBFNN prediction.

In a radial system with DG, current can be seen flowing from various directions. Therefore, current magnitude at
faulty bus (fault current) was higher compared to system or network without DG.

It was also found that, network zoning and monitor placement can affect RBFNN prediction accuracy. In 10 bus
system without DG, only 1 monitor placement was needed, while in 10 bus system with DG, 2 monitor placements
were required to predict current magnitudes at buses during LG fault. In a larger system, only 13 monitor placements
were required in 34 bus network with DGs. Finally, with accurate current magnitude prediction by RBFNN, faulty bus
can be identified via current magnitude pattern at buses during fault.
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4.  Conclusion

It was found that it is possible to detect fault location in term of faulty bus by only several monitor placements in
distribution system for LG fault using RBFNN. With accurate current magnitude prediction at buses using RBFNN,
faulty bus can then be identified via current magnitude pattern during fault of each particular network.

In a larger network system, correct network zoning and monitor placement selection is required to get greater
RBFNN prediction accuracy. To select the best monitor to be placed in system, all possible current flow during fault
first need to be identified. Monitored buses shall be buses which will act as current source during fault. With proper
network zoning and monitor placement, current magnitude prediction for all buses in radial distribution system can be
performed accurately by RBFNN. Also, with the consideration on monitor placement in this study, minimum monitor
placement has been achieved for all test models; namely, 10 bus single radial distribution system without DG, 10 bus
single radial distribution system with DG and 34 bus radial distribution system with DG. With accurate prediction of
current magnitude by RBFNN, faulty bus can be identified by arranging all predicted data into table and observe
current magnitude patterns during fault. The bus with highest magnitude of current is the faulty bus.

However, lower accuracy result was shown in 34 bus network without DG even though same approach has been
applied to predict current magnitudes at buses. RBFNN inaccuracy for this network can be seen caused by inability of
RBFNN to accurately predict 0 p.u. current magnitudes at buses. This is perhaps due to limitation of nntool in
MATLAB, and further study to improve accuracy of RBFNN prediction need to be conducted.
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